Tracing the biogeographic history of the world's most isolated insular floras

Ángela Aguado-Lara , Isabel Sanmartín , Johannes J. Le Roux , Carlos García-Verdugo , Sonia Molino , Peter Convey , Bettine Jansen van Vuuren , Mario Mairal

Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (4) : 952 -973.

PDF
Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (4) : 952 -973. DOI: 10.1111/jse.13170
Research Article

Tracing the biogeographic history of the world's most isolated insular floras

Author information +
History +
PDF

Abstract

Inferring general biogeographic patterns in the sub-Antarctic region has been challenging due to the disparate geological origins of its islands and archipelagos—ranging from Gondwanan fragments to uplifted seafloor and more recently formed volcanic islands—and the remoteness of these island systems, spread around the austral continental landmasses. Here, we conduct phylogenetic reconstruction, divergence time estimation, and Bayesian Island Biogeographic analyses to reconstruct the spatio–temporal colonization histories of seven vascular plant lineages, which are either widespread across the sub-Antarctic region (Acaena magellanica, Austroblechnum penna-marina, Azorella selago, Notogrammitis crassior) or restricted to an extremely remote sub-Antarctic province (Colobanthus kerguelensis, Polystichum marionense, Pringlea antiscorbutica). Our results reveal high biological connectivity within the sub-Antarctic region, with southern landmasses (Australia, New Zealand, South America) as key sources of sub-Antarctic plant diversity since the Miocene, supporting long-distance dispersal as the primary colonization mechanism rather than tectonic vicariance. Despite the geographic isolation of the sub-Antarctic islands, eastward and westward colonization events have maintained this connectivity, likely facilitated by eastward-moving marine and wind currents, short-term weather systems, and/or dispersal by birds. Divergence time estimates indicate that most species diverged within the Plio–Pleistocene, with crown ages predating the Last Glacial Maximum, suggesting that sub-Antarctic archipelagos acted as refuges for biodiversity. Our findings highlight the role of one of the most remote sub-Antarctic archipelagos as both a refugium and a source of (re)colonization for continental regions. These results underscore the urgent need for establishing priority conservation plans in the sub-Antarctic, particularly in the face of climate change.

Keywords

austral biogeography / island colonization / long-distance dispersal / phylogenetics / sub-Antarctic islands

Cite this article

Download citation ▾
Ángela Aguado-Lara, Isabel Sanmartín, Johannes J. Le Roux, Carlos García-Verdugo, Sonia Molino, Peter Convey, Bettine Jansen van Vuuren, Mario Mairal. Tracing the biogeographic history of the world's most isolated insular floras. Journal of Systematics and Evolution, 2025, 63(4): 952-973 DOI:10.1111/jse.13170

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alfaro ME, Zoller S, Lutzoni F. 2003. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology and Evolution 20: 255-266.

[2]

Andersson L, Kocsis M, Eriksson R. 2006. Relationships of the genus Azorella (Apiaceae) and other hydrocotyloids inferred from sequence variation in three plastid markers. Taxon 55: 270-280.

[3]

Arjona Y, Nogales M, Heleno R, Vargas P. 2018. Long-distance dispersal syndromes matter: Diaspore-trait effect on shaping plant distribution across the Canary Islands. Ecography 41: 805-814.

[4]

Bahr A, Kaboth-Bahr S, Karas C. 2022. The opening and closure of oceanic seaways during the Cenozoic: Pacemaker of global climate change? Geological Society London Special Publications 523: 141-171.

[5]

Baele G, Lemey P, Vansteelandt S. 2013. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinformatics 14: 1-18.

[6]

Baker CM, Boyer SL, Giribet G. 2020. A well-resolved transcriptomic phylogeny of the mite harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) reveals signatures of Gondwanan vicariance. Journal of Biogeography 47: 1345-1361.

[7]

Bartish IV, Aïnouche A, Jia D, Bergstrom D, Chown SL, Winkworth RC, Hennion F. 2012. Phylogeny and colonization history of P. antiscorbutica (Brassicaceae), an emblematic endemic from the South Indian Ocean Province. Molecular Phylogenetics and Evolution 65: 748-756.

[8]

Bergstrom DM, Hodgson DA, Convey P. 2006. The physical setting of the Antarctic. In: Bergstrom DM, Convey P, Huiskes AHL eds. Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Dordrecht: Springer. 15-33.

[9]

Biersma EM, Jackson J, Hyvönen J, Koskinen S, Linse K, Griffiths H, Convey P. 2017. Global movements in bipolar moss species. Royal Society Open Science 4: 170147.

[10]

Biersma EM, Torres-Díaz C, Molina-Montenegro MA, Newsham , Kevin K, Vidal MA, Collado GA, Acuña-Rodríguez IS, Ballesteros GI, Figueroa CC, Goodall-Copestake WP, Leppe MA, Cuba-Díaz M, Valladares MA, Pertierra LR, Convey P. 2020. Multiple late-Pleistocene colonization events of the Antarctic pearlwort Colobanthus quitensis (Caryophyllaceae) reveal the recent arrival of native Antarctic vascular flora. Journal of Biogeography 47: 1663-1673.

[11]

Breitwieser I, Glenny DS, Thorne A, Wagstaff SJ. 1999. Phylogenetic relationships in Australasian Gnaphalieae (Compositae) inferred from ITS sequences. New Zealand Journal of Botany 37: 399-412.

[12]

Burridge CP, McDowall RM, Craw D, Wilson MV, Waters JM. 2012. Marine dispersal as a pre-requisite for Gondwanan vicariance among elements of the galaxiid fish fauna. Journal of Biogeography 39: 306-321.

[13]

Chau JH, Mtsi NIS, Münbergová Z, Greve M, Le Roux PC, Mairal M, Le Roux JJ, Dorrington RA, Jansen , van Vuuren B. 2020. An update on the indigenous vascular flora of sub-Antarctic Marion Island: Taxonomic changes, sequences for DNA barcode loci, and genome size data. Polar Biology 43: 1817-1828.

[14]

Chown SL. 1994. Historical ecology of sub-Antarctic weevils (Coleoptera: Curculionidae): Patterns and processes on isolated islands. Journal of Natural History 28: 411-433.

[15]

Chown SL, Gremmen NJM, Gaston KJ. 1998. Ecological biogeography of Southern Ocean islands: Species-area relationships, human impacts, and conservation. American Naturalist 152: 562-575.

[16]

Clapperton CM. 1990. Quaternary glaciations in the Southern Hemisphere: An overview. Quaternary Science Reviews 9: 299-304.

[17]

Convey P. 2007. Influences on and origins of terrestrial biodiversity of the sub-Antarctic islands. Papers and Proceedings of the Royal Society of Tasmania 141: 83-93.

[18]

Convey P, Biersma EM, Casanova-Katny A, Maturana CS. 2020. Refuges of Antarctic diversity. In: Oliva M, Ruiz-Fernández J eds. Past Antarctica, Chapter 10. Burlington: Academic Press. 181-200.

[19]

Crowl AA, Miles NW, Visger CJ, Hansen K, Ayers T, Haberle R, Cellinese N. 2016. A global perspective on Campanulaceae: Biogeographic, genomic, and floral evolution. American Journal of Botany 103: 233-245.

[20]

Darlington PJ. 1959. Area, climate, and evolution. Evolution 13: 488-510.

[21]

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9: 772.

[22]

Deppe L. 2012. Spatial and temporal patterns of at-sea distribution and habitat use of New Zealand albatrosses. Ph.D. Dissertation. Christchurch: University of Canterbury.

[23]

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88.

[24]

Edelman DW. 1975. The Eocene Germer Basin flora of south-central Idaho. M.S. Thesis. Moscow, Idaho: University of Idaho.

[25]

Fernández-Mazuecos M, Vargas P. 2011. Genetically depauperate in the continent but rich in oceanic islands: Cistus monspeliensis (Cistaceae) in the Canary Islands. PLoS One 6: e17172.

[26]

Fernández-Palacios JM, De Nascimento L, Otto R, Delgado JD, García-del-Rey E, Arévalo JR, Whittaker RJ. 2011. A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. Journal of Biogeography 38: 226-246.

[27]

Fior S, Karis PO, Casazza G, Minuto L, Sala F. 2006. Molecular phylogeny of the Caryophyllaceae (Caryophyllales) inferred from chloroplast matK and nuclear rDNA ITS sequences. American Journal of Botany 93: 399-411.

[28]

Fraser CI, Nikula R, Ruzzante DE, Waters JM. 2012. Poleward bound: Biological impacts of Southern Hemisphere glaciation. Trends in Ecology & Evolution 27: 462-471.

[29]

Fraser CI, Nikula R, Spencer HG, Waters JM. 2009. Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proceedings of the National Academy of Sciences USA 106: 3249-3253.

[30]

Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM. 2005. Biological invasions in the Antarctic: Extent, impacts and implications. Biological Reviews 80: 45-72.

[31]

Freyman WA, Höhna S. 2018. Cladogenetic and anagenetic models of chromosome number evolution: A Bayesian model averaging approach. Systematic Biology 67: 195-215.

[32]

García-Verdugo C, Caujapé-Castells J, Sanmartín I. 2019. Colonization time on island settings: Lessons from the Hawaiian and Canary Island floras. Botanical Journal of the Linnean Society 191: 155-163.

[33]

García-Verdugo C, Mairal M, Tamaki I, Msanda F. 2021. Phylogeography at the crossroad: Pleistocene range expansion throughout the Mediterranean and back-colonization from the Canary Islands in the legume Bituminaria bituminosa. Journal of Biogeography 48: 1622-1634.

[34]

Gasper AL, Almeida TE, Dittrich VAO, Smith AR, Salino A. 2017. Molecular phylogeny of the fern family Blechnaceae (Polypodiales) with a revised genus-level treatment. Cladistics 33: 429-446.

[35]

Gernhard T. 2008. New analytic results for speciation times in neutral models. Bulletin of Mathematical Biology 70: 1082-1097.

[36]

Gómez A, Lunt DH. 2007. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian peninsula. In: Weiss S, Ferrand N eds. Phylogeography of Southern European refugia: Evolutionary perspectives on the origins and conservation of European biodiversity. Netherlands: Springer. 155-188.

[37]

Guilford T, Meade J, Willis J, Phillips RA, Boyle D, Roberts S, Collett M, Freeman R, Perrins CM. 2009. Migration and stopover in a small pelagic seabird, the Manx shearwater Puffinus puffinus: Insights from machine learning. Proceedings of the Royal Society B: Biological Sciences 276: 1215-1223.

[38]

Hall K. 2004. Quaternary glaciation of the sub-Antarctic Islands. In: Ehlers J, Gibbard PL eds. Quaternary glaciations—Extent and chronology, Part III. Canada: Elsevier. 339-345.

[39]

Ho SYW, Duchêne S, Duchêne D. 2015. Simulating and detecting autocorrelation of molecular evolutionary rates among lineages. Molecular Ecology Resources 15: 688-696.

[40]

Höhna S, Landis MJ, Heath TA, Boussau B, Lartillot N, Moore BR, Huelsenbeck JP, Ronquist F. 2016. RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language. Systematic Biology 65: 726-736.

[41]

Hooker JD, Fitch WH. 1844. The botany of the Antarctic voyage of HM discovery ships Erebus and Terror in the years 1839-1843: Under the command of Captain Sir James Clark Ross (1). London: Reeve.

[42]

Hulton NRJ, Purves RS, McCulloch RD, Sugden DE, Bentley MJ. 2002. The Last Glacial Maximum and deglaciation in southern South America. Quaternary Science Reviews 21: 233-241.

[43]

Jauregui-Lazo J, Potter D. 2021. Phylogeny and biogeography of Acaena (Rosaceae) and its relatives: Evidence of multiple long-distance dispersal events across the globe. Systematic Botany 46: 998-1010.

[44]

Kingman JFC. 1982. The coalescent. Stochastic Processes and their Applications 13: 235-248.

[45]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549.

[46]

Landers TJ, Rayner MJ, Phillips RA, Hauber ME. 2011. Dynamics of seasonal movements by a transPacific migrant, the Westland petrel. The Condor 113: 71-79.

[47]

Le Péchon T, Zhang L, He H, Zhou XM, Bytebier B, Gao XF, Zhang LB. 2016. A well-sampled phylogenetic analysis of the polystichoid ferns (Dryopteridaceae) suggests a complex biogeographical history involving both boreotropical migrations and recent transoceanic dispersals. Molecular Phylogenetics and Evolution 98: 324-336.

[48]

Le Roux JJ, Clusella-Trullas S, Mokotjomela TM, Mairal M, Richardson DM, Skein L, Wilson JR, Weyl OLF, Geerts S. 2020. Biotic interactions as mediators of biological invasions: Insights from South Africa. Biological Invasions in South Africa 35: 387-427.

[49]

Lehnebach CA, Winkworth RC, Becker M, Lockhart PJ, Hennion F. 2017. Around the pole: Evolution of sub-Antarctic Ranunculus. Journal of Biogeography 44: 875-886.

[50]

Livermore R, Hillenbrand CD, Meredith M, Eagles G. 2007. Drake Passage and Cenozoic climate: An open and shut case? Geochemistry, Geophysics, Geosystems 8: Q01005.

[51]

Lopes JC, Fonseca LHM, Johnson DM, Luebert F, Murray N, Nge FJ, Rodrigues-Vaz C, Soulé V, Onstein RE, Lohmann LG, Couvreur TL. 2024. Dispersal from Africa to the Neotropics was followed by multiple transitions across Neotropical biomes facilitated by frugivores. Annals of Botany 133: 659-676.

[52]

MacArthur R, Wilson EO. 1967. The theory of island biogeography. Princeton, NJ: Princeton University Press.

[53]

Macaya EC, López B, Tala F, Tellier F, Thiel M. 2016. Float and raft: Role of buoyant seaweeds in the phylogeography and genetic structure of non-buoyant associated flora. In: Hu Z-M, Fraser C eds. Seaweed phylogeography: Adaptation and evolution of seaweeds under environmental change. Dordrecht: Springer. 97-130.

[54]

Mairal M, Caujapé-Castells J, Pellissier L, Jaén-Molina R, Álvarez N, Heuertz M, Sanmartín I. 2018. A tale of two forests: Ongoing aridification drives population decline and genetic diversity loss at continental scale in Afro-Macaronesian evergreen-forest archipelago endemics. Annals of Botany 122: 1005-1017.

[55]

Mairal M, Chown SL, Shaw J, Chala D, Chau JH, Hui C, Kalwij JM, Münzbergová Z, Jansen Van Vuuren B, Le Roux JJ. 2022. Human activity strongly influences genetic dynamics of the most widespread invasive plant in the sub-Antarctic. Molecular Ecology 31: 1649-1665.

[56]

Mairal M, García-Verdugo C, Le Roux JJ, Chau JH, Van Vuuren BJ, Hui C, Münzbergová Z, Chown SL, Shaw JD. 2023. Multiple introductions, polyploidy and mixed reproductive strategies are linked to genetic diversity and structure in the most widespread invasive plant across Southern Ocean archipelagos. Molecular Ecology 32: 756-771.

[57]

Marticorena AE, Cavieres LA. 2000. A. magellanica (Lam.) Vahl (Rosaceae). Gayana Botánica 57: 107-113.

[58]

Maturana CS, Rosenfeld S, Biersma EM, Segovia NI, González-Wevar CA, Díaz A, Naretto J, Duggan IC, Hogg ID, Poulin E, Convey P, Jackson JA. 2021. Historical biogeography of the Gondwanan freshwater genus Boeckella (Crustacea): Timing and modes of speciation in the Southern Hemisphere. Diversity and Distributions 27: 2330-2343.

[59]

Matzke NJ. 2022. Statistical comparison of DEC and DEC+J is identical to comparison of two ClaSSE submodels and is therefore valid. Journal of Biogeography 49: 1805-1824.

[60]

Mazibuko N, Greve M, le Roux PC. 2024. Dispersal potential does not predict recent range expansions of sub-Antarctic plant species. Polar Biology 47: 1-16.

[61]

Michaux B, Leschen RAB. 2005. East meets west: Biogeology of the Campbell Plateau. Biological Journal of the Linnean Society 86: 95-115.

[62]

Moon KL, Chown SL, Fraser CI. 2017. Reconsidering connectivity in the sub-Antarctic: Reconsidering connectivity in the sub-Antarctic. Biological Reviews 92: 2164-2181.

[63]

Mortimer E, Jansen van Vuuren B, Lee JE, Marshall DJ, Convey P, Chown SL. 2011. Mite dispersal among the Southern Ocean Islands and Antarctica before the last glacial maximum. Proceedings of the Royal Society B: Biological Sciences 278: 1247-1255.

[64]

Mortimer E, McGeoch MA, Daniels SR, Van Vuuren BJ. 2008. Growth form and population genetic structure of A. selago on sub-Antarctic Marion Island. Antarctic Science 20: 381-390.

[65]

Moseley HN. 1879. On the structure of the Stylas-Teridae a family of hydroid stony corals. Nature 20: 339-341.

[66]

Muñoz J, Felicísimo ÁM, Cabezas F, Burgaz AR, Martínez I. 2004. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304: 1144-1147.

[67]

Murtagh F, Legendre P. 2014. Ward's hierarchical agglomerative clustering method: Which algorithms implement Ward's criterion? Journal of Classification 31: 274-295.

[68]

Nel W, Hedding DW, Rudolph EM. 2023. The sub-Antarctic islands are increasingly warming in the 21st century. Antarctic Science 35: 124-126.

[69]

Nicolas AN, Plunkett GM. 2012. Untangling generic limits in Azorella, Laretia and Mulinum (Apiaceae: Azorelloideae): Insights from phylogenetics and biogeography. Taxon 61: 826-840.

[70]

Paradis E. 2018. Analysis of haplotype networks: The randomized minimum spanning tree method. Methods in Ecology and Evolution 9: 1308-1317.

[71]

Paradis E.2010. pegas: An R package for population genetics with an integrated-dmodular approach. Bioinformatics 26: 419-420.

[72]

Patterson SL. 1985. Surface circulation and kinetic energy distributions in the Southern Hemisphere oceans from FGGE drifting buoys. Journal of Physical Oceanography 15: 865-884.

[73]

Perrie L, Parris B. 2012. Chloroplast DNA sequences indicate the grammitid ferns (Polypodiaceae) in New Zealand belong to a single clade, Notogrammitis gen. Nov. New Zealand Journal of Botany 50: 457-472.

[74]

Pfuhl HA, McCave IN. 2005. Evidence for late Oligocene establishment of the Antarctic Circumpolar Current. Earth and Planetary Science Letters 235: 715-728.

[75]

Posada D. 2009. Selection of models of DNA evolution with jModelTest. In: Posada D ed. Bioinformatics for DNA sequence analysis. USA: Humana Press. 537: 93-112.

[76]

PPG I. 2016. A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54: 563-603.

[77]

Quilty P. 2007. Origin and evolution of the sub-Antarctic islands: The foundation. Papers and Proceedings of the Royal Society of Tasmania 141: 35-58.

[78]

R Core Team. 2022. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

[79]

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901-904.

[80]

Ramos VA, Cingolani C, Junior FC, Naipauer M, Rapalini A. 2017. The Malvinas (Falkland) Islands revisited: The tectonic evolution of southern Gondwana based on U-Pb and Lu-Hf detrital zircon isotopes in the Paleozoic cover. Journal of South American Earth Sciences 76: 320-345.

[81]

Ranker TA, Smith AR, Parris BS, Geiger JMO, Haufler CH, Straub SCK, Schneider H. 2004. Phylogeny and evolution of Grammitid Ferns (Grammitidaceae): A case of rampant morphological homoplasy. Taxon 53: 415-428.

[82]

Ree RH, Smith SA. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57: 4-14.

[83]

Richardson JE, Fay MF, Cronk QC, Chase MW. 2003. Species delimitation and the origin of populations in island representatives of Phylica (Rhamnaceae). Evolution 57: 816-827.

[84]

Rincón-Barrado M, Villaverde T, Perez MF, Sanmartín I, Riina R. 2024. The sweet tabaiba or there and back again: Phylogeographical history of the Macaronesian Euphorbia balsamifera. Annals of Botany 135: 883-904.

[85]

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542.

[86]

Sanmartín I. 2012. Historical biogeography: Evolution in time and space. Evolution: Education and Outreach 5: 555-568.

[87]

Sanmartín I. 2022. Analytical approaches in biogeography: Advances and challenges. In: Guilbert E ed. Biogeography: An integrative approach of the evolution of living. Hoboken, NJ: Wiley. 27-58.

[88]

Sanmartín I, Anderson CL, Alarcon M, Ronquist F, Aldasoro JJ. 2010. Bayesian island biogeography in a continental setting: The Rand Flora case. Biology Letters 6: 703-707.

[89]

Sanmartín I, Ronquist F. 2004. Southern hemisphere biogeography inferred by event-based models: Plant versus animal Patterns. Systematic Biology 53: 216-243.

[90]

Sanmartín I, Van Der Mark P, Ronquist F. 2008. Inferring dispersal a Bayesian approach to phylogeny-based island. Journal of Biogeography 35: 428-449.

[91]

Sanmartín I, Wanntorp L, Winkworth RC. 2007. West Wind Drift revisited: Testing for directional dispersal in the Southern Hemisphere using event-based tree fitting. Journal of Biogeography 34: 398-416.

[92]

Sarkar S, Basak C, Frank M, Berndt C, Huuse M, Badhani S, Bialas J. 2019. Late Eocene onset of the proto-Antarctic circumpolar current. Scientific Reports 9: 10125.

[93]

Schrader J, Weigelt P, Cai L, Westoby M, Fernández-Palacios JM, Cabezas FJ, Plunkett GM, Ranker TA, Triantis KA, Trigas P, Kubota Y, Kreft H. 2024. Islands are key for protecting the world's plant endemism. Nature 634: 1-7.

[94]

Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL. 2005. The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92: 142-166.

[95]

Smith VR. 2002. Climate change in the sub-Antarctic: An illustration from Marion Island. Climatic Change 52: 345-357.

[96]

Smith TM, York PH, Broitman BR, Thiel M, Hays GC, van Sebille E, Putman NF, Macreadie PI, Sherman CDH. 2018. Rare long-distance dispersal of a marine angiosperm across the Pacific Ocean. Global Ecology and Biogeography 27: 487-496.

[97]

Stokes S.1988. R13/f0171. FRED. The Fossil Record Electronic Database. Available from https://fred.org.nz/index.jsp [accessed October 2024].

[98]

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4: vey016.

[99]

Sundue MA, Parris BS, Ranker TA, Smith AR, Fujimoto EL, Zamora-Crosby D, Morden CW, Chiou WL, Chen CW, Rouhan G, Hirai RY, Prado J. 2014. Global phylogeny and biogeography of grammitid ferns (Polypodiaceae). Molecular Phylogenetics and Evolution 81: 195-206.

[100]

Swenson U, Backlund A, McLoughlin S, Hill RS. 2001. Nothofagus biogeography revisited with special emphasis on the enigmatic distribution of subgenus Brassospora in New Caledonia. Cladistics 17: 28-47.

[101]

Testo W, Field A, Barrington D. 2018. Overcoming among-lineage rate heterogeneity to infer the divergence times and biogeography of the clubmoss family Lycopodiaceae. Journal of Biogeography 45: 1929-1941.

[102]

Tribble CM, Freyman WA, Landis MJ, Lim JY, Barido-Sottani J, Kopperud BT, Höhna S, May MR. 2022. RevGadgets: An R package for visualizing Bayesian phylogenetic analyses from RevBayes. Methods in Ecology and Evolution 13: 314-323.

[103]

Trewick SA, Morgan-Richards M, Russell SJ, Henderson S, Rumsey FJ, Pintér I, Barrett JA, Gibby M, Vogel JC. 2002. Polyploidy, phylogeography and Pleistocene refugia of the rockfern Asplenium ceterach: Evidence from chloroplast DNA. Molecular Ecology 11: 2003-2012.

[104]

Van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics 18: 411-424.

[105]

Van der Putten N, Verbruggen C, Ochyra R, Verleyen E, Frenot Y. 2010. Subantarctic flowering plants: Pre-glacial survivors or post-glacial immigrants? Journal of Biogeography 37: 582-592.

[106]

Van Vuuren BJ, Lee JE, Convey P, Chown SL. 2018. Conservation implications of spatial genetic structure in two species of oribatid mites from the Antarctic Peninsula and the Scotia Arc. Antarctic Science 30: 105-114.

[107]

Wagstaff SJ, Breitwieser I, Ito M. 2011. Evolution and biogeography of Pleurophyllum (Astereae, Asteraceae), a small genus of megaherbs endemic to the subantarctic islands. American Journal of Botany 98: 62-75.

[108]

Walton DW. 1979. Studies on Acaena (Rosaceae): III. Flowering and hybridization on South Georgia. British Antarctic Survey Bulletin 48: 1-13.

[109]

Walton DWH. 1982. Floral phenology in the South Georgian vascular flora. British Antarctic Survey Bulletin 55: 11-25.

[110]

Walton DWH, Greene SW. 1971. The South Georgian species of Acaena and their probable hybrid. British Antarctic Survey Bulletin 23: 29-44.

[111]

Waters JM. 2008. Driven by the West Wind Drift? A synthesis of southern temperate marine biogeography, with new directions for dispersalism. Journal of Biogeography 35: 417-427.

[112]

Weimerskirch H, Jouventin P, Mougin JL, Stahl JC, Beveren MV. 1985. Banding recoveries and the dispersal of seabirds breeding in French Austral and Antarctic territories. Emu—Austral Ornithology 85: 22-33.

[113]

Whittaker RJ, Fernández-Palacios JM, Matthews TJ, Borregaard MK, Triantis KA. 2017. Island biogeography: Taking the long view of nature's laboratories. Science 357: eaam8326.

[114]

Wickham H. 2006. An introduction to ggplot: An implementation of the grammar of graphics in R. Statistics 1-8. https://ggplot2.tidyverse.org

[115]

Winkworth RC, Hennion F, Prinzing A, Wagstaff SJ. 2015. Explaining the disjunct distributions of austral plants: The roles of Antarctic and direct dispersal routes. Journal of Biogeography 42: 1197-1209.

[116]

Winkworth RC, Wagstaff SJ, Glenny D, Lockhart PJ. 2002. Plant dispersal news from New Zealand. Trends in Ecology & Evolution 17: 514-520.

[117]

Wolfe KH, Li WH, Sharp PM. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences USA 84: 9054-9058.

[118]

Xu J, Pérez-Losada M, Jara CG, Crandall KA. 2009. Pleistocene glaciation leaves deep signature on the freshwater crab Aegla alacalufi in Chilean Patagonia. Molecular Ecology 18: 904-918.

[119]

Zhang S, Jin J, Chen S, Chase MW, Soltis DE, Li H, Yang J, Li D, Yi T. 2017. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytologist 214: 1355-1367.

RIGHTS & PERMISSIONS

2025 The Author(s). Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

57

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/