Novel phylogenetic analysis of the Mesozoic common gymnosperm Xenoxylon Gothan reveals close affinity with extant Podocarpaceae (Coniferales)

Aowei Xie , Shook Ling Low , Yongdong Wang , Ning Tian , Dieter Uhl

Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (2) : 469 -478.

PDF
Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (2) : 469 -478. DOI: 10.1111/jse.13132
Research Article

Novel phylogenetic analysis of the Mesozoic common gymnosperm Xenoxylon Gothan reveals close affinity with extant Podocarpaceae (Coniferales)

Author information +
History +
PDF

Abstract

Fossil wood is one of the crucial proxies for understanding terrestrial vegetation composition and development in the Earth's history. The gymnosperm wood taxon Xenoxylon Gothan is a significant member of the Mesozoic flora. To date, more than 20 species of Xenoxylon have been described. However, its botanical affinities have remained enigmatic ever since it was described, over a century ago. Here we perform a phylogenetic analysis of Xenoxylon to understand the systematic relationship with extant conifers. Data come from four nucleotide regions (trnL-F, trnK-matK, rbcL, psbA-trnH), xylological characters, and biomolecular composition of five extant conifer families; for Xenoxylon, no nucleotide data are available. Using maximum parsimony in Tree Analysis using New Technology, Xenoxylon appeared basal to Araucariaceae in the data set combining genes and xylological characters, whereas Xenoxylon is placed next to Podocarpaceae in the data set combining genes and biomolecular characters. To find a reliable systematic placement of Xenoxylon, a combined data set of genes, xylological and biomolecular characters is analyzed. Our results and interpretations indicate that Xenoxylon is closely related to Podocarpaceae. This first phylogenetic analysis of Xenoxylon fills the knowledge gap of the systematic relationship of this taxon and contributes to a better understanding of the evolution of extant Podocarpaceae.

Keywords

chemotaxonomy / cladistics / fossil wood taxon / TNT / xylology

Cite this article

Download citation ▾
Aowei Xie, Shook Ling Low, Yongdong Wang, Ning Tian, Dieter Uhl. Novel phylogenetic analysis of the Mesozoic common gymnosperm Xenoxylon Gothan reveals close affinity with extant Podocarpaceae (Coniferales). Journal of Systematics and Evolution, 2025, 63(2): 469-478 DOI:10.1111/jse.13132

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andres B. 2021. Phylogenetic systematics of Quetzalcoatlus Lawson 1975 (Pterodactyloidea: Azhdarchoidea). Journal of Vertebrate Paleontology 41(sup1): 203-217.

[2]

Andruchow-Colombo A, Escapa IH, Aagesen L, Matsunaga KKS. 2023. In search of lost time: tracing the fossil diversity of Podocarpaceae through the ages. Botanical Journal of the Linnean Society 203(4): 315-336.

[3]

Arnold CA. 1952. Silicified plant remains from the Mesozoic and Tertiary of Western North America II. Some fossil woods from Alaska. Papers of the Michigan Academy of Sciences Arts and Letters 38: 8-20.

[4]

Bailey IW. 1953. Evolution of the tracheary tissue of land plants. American Journal of Botany 40(1): 4-8.

[5]

Boura A, Bamford M, Philippe M. 2021. Promoting a standardized description of fossil tracheidoxyls. Review of Palaeobotany and Palynology 295: 104525.

[6]

Bowe LM, Coat G, dePamphilis CW. 2000. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales′ closest relatives are conifers. Proceedings of the National Academy of Sciences United States of America 97(8): 4092-4097.

[7]

Chaffee AL, Hoover DS, Johns RB, Schweighardt FK. 1986. Biological markers extractable from coal. In: Johns RB ed. Biological markers in the sedimentary record. United States: Elsevier. 311-345.

[8]

Feng Z, Wei HB, Wang CL, Chen YX, Shen JJ, Yang JY. 2015. Wood decay of Xenoxylon yunnanensis Feng sp. nov. from the Middle Jurassic of Yunnan Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology 433: 60-70.

[9]

Fischer TC, Sonibare OO, Aschauer B, Kleine-Benne E, Braun P, Meller B. 2017. Amber from the Alpine Triassic of Lunz (Carnian, Austria): A classic palaeobotanical site. Palaeontology 60(5): 743-759.

[10]

Gernandt DS, Holman G, Campbell C, Parks M, Mathews S, Raubeson LA, Liston A, Stockey RA, Rothwell GW. 2016. Phylogenetics of extant and fossil Pinaceae: Methods for increasing topological stability. Botany 94(9): 863-884.

[11]

Goloboff PA, Farris JS, Nixon KC. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24(5): 774-786.

[12]

Gothan W. 1905. Zur Anatomie lebender und fossiler Gymnospermen-Hölzer. Abhandlungen der preußischen Geologischen Landesanstalt 44: 1-108.

[13]

IAWA Committee. 2004. IAWA list of microscopic features for softwood identification. IAWA Journal 25(1): 1-70.

[14]

InsideWood. 2004-2023. InsideWood datasets [online]. Available from http://insidewood.lib.ncsu.edu/search [accessed October, 2022].

[15]

Jarmolenko AV. 1933. The experimental application of stem secondary wood anatomy to investigation of conifer phylogeny. Soviet Botany 6: 46-63.

[16]

Liu B, Vrabec M, Markič M, Püttmann W. 2019. Reconstruction of paleobotanical and paleoenvironmental changes in the Pliocene Velenje Basin, Slovenia, by molecular and stable isotope analysis of lignites. International Journal of Coal Geology 206: 31-45.

[17]

Low SL, Su T, Spicer TEV, Wu FX, Deng T, Xing YW, Zhou ZK. 2020. Oligocene Limnobiophyllum (Araceae) from the central Tibetan Plateau and its evolutionary and palaeoenvironmental implications. Journal of Systematic Palaeontology 18(5): 415-431.

[18]

Lu Y, Hautevelle Y, Michels R. 2013. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy-Part 1: The Araucariaceae family. Biogeosciences 10(3): 1943-1962.

[19]

Maddison WP, Maddison DR. 2017. Mesquite: A modular system for evolutionary analysis (Version 3.2) [online]. Available from http://mesquiteproject.org [accessed January, 2023].

[20]

Marynowski L, Philippe M, Zatoń MH. 2008. Systematic relationships of the Mesozoic wood genus Xenoxylon: An integrative biomolecular and palaeobotanical approach. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 247(2): 177-189.

[21]

Nathorst AG. 1897. Zur mesozoischen Flora Spitzbergens. Kungliga Svenska Vetenskapsakademiens Handlingar 30: 1-77.

[22]

Nosova NV, Kiritchkova AI. 2008. First records of the genus Mirovia Reymanówna (Miroviaceae, Coniferales) from the Lower Jurassic of Western Kazakhstan (Mangyshlak). Paleontological Journal 42(12): 1383-1392.

[23]

Otto A, Simoneit BRT. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochimica et Cosmochimica Acta 65(20): 3505-3527.

[24]

Otto A, Wilde V. 2001. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers—A review. The Botanical Review 67(2): 141-238.

[25]

Palibin IV, Jarmolenko AV. 1932. Novyi vid iskopayemoy drevesiny s Vitimskogo ploskogorya. Izvestiya Vsesoyuznogo geologo-razvedyvatel′nogo obyedineniya (Trudy VGRO) 51: 177-179.

[26]

Philippe M, Bamford MK. 2008. A key to morphogenera used for Mesozoic conifer-like woods. Review of Palaeobotany and Palynology 148(2-4): 184-207.

[27]

Philippe M, Thévenard F, Nosova N, Kim K, Naugolnykh S. 2013. Systematics of a palaeoecologically significant boreal Mesozoic fossil wood genus, Xenoxylon Gothan. Review of Palaeobotany and Palynology 193: 128-140.

[28]

Ran JH, Shen TT, Wang MM, Wang XQ. 2018. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. Proceedings of the Royal Society B: Biological Sciences 285: 20181012.

[29]

Shilkina IA, Khudaiberdyev RKh. 1971. Novyie nakhodki i obzor rodov Protocedroxylon i Xenoxylon. Paleobotanika Uzbekistana 2: 117-142.

[30]

Simoneit BRT, Otto A, Menor-Sálvan C, Oros DR, Wilde V, Riegel W. 2021. Composition of resinites from the Eocene Geiseltal brown coal basin, Saxony-Anhalt, Germany and comparison to their possible botanical analogues. Organic Geochemistry 152: 104138.

[31]

Streibl M, Herout V. 1969. Terpenoids—Especially oxygenated mono-, sesqui-, di-, and triterpenes. In: Eglinton G, Murphy MTJ eds. Organic geochemistry: Methods and results. Berlin: Springer. 401-424.

[32]

Tian N, Wang Y, Philippe M, Li L, Xie X, Jiang Z. 2016. New record of fossil wood Xenoxylon from the Late Triassic in the Sichuan Basin, southern China and its paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 464: 65-75.

[33]

Vento B, Agrain F, Puebla G, Pinzon D. 2023. Phylogenetic relationships in genus Nothofagus: The role of Antarctic fossil leaves. Acta Palaeontologica Polonica 68: 175-183.

[34]

Wan M, Zhou W, Tang P, Liu L, Wang J. 2016. Xenoxylon junggarensis sp. nov., a new gymnospermous fossil wood from the Norian (Triassic) Huangshanjie Formation in northwestern China, and its palaeoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 441: 679-687.

[35]

Wheeler EA. 2011. InsideWood—A web resource for hardwood anatomy. IAWA Journal 32(2): 199-211.

[36]

Won H, Renner SS. 2006. Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales)—Clock calibration when outgroup relationships are uncertain. Systematic Biology 55(4): 610-622.

[37]

Wu F, Miao D, Chang M, Shi G, Wang N. 2017. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Scientific Reports 7(1): 878.

[38]

Xie A, Gee CT, Bennis MB, Gray D, Sprinkel DA. 2021. A more southerly occurrence of Xenoxylon in North America: X. utahense Xie et Gee sp. nov. from the Upper Jurassic Morrison Formation in Utah, USA, and its paleobiogeographic and paleoclimatic significance. Review of Palaeobotany and Palynology 291: 104451.

[39]

Xie A, Teng X, Wang Y, Tian N, Jiang Z, Uhl D. 2024. A quantitative analysis of leaf life span reveals the Mesozoic significant gymnosperm Xenoxylon as evergreen: First evidence from the Early Cretaceous Jehol Biota in northeastern China. Cretaceous Research 154: 105770.

[40]

Yang Y, Ferguson DK, Liu B, Mao KS, Gao LM, Zhang SZ, Wan T, Rushforth K, Zhang ZX. 2022. Recent advances on phylogenomics of gymnosperms and a new classification. Plant Diversity 44(4): 340-350.

[41]

Youssef SGM. 2002. Xenoxylon wood from late Jurassic-early cretaceous of Gebel Kamil, Egypt. IAWA Journal 23(1): 69-76.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/