Phylogenomic support for the allopolyploid origin of the northwest Iberian endemic orchid Dactylorhiza cantabrica with Hyb-Seq

Eva Pardo Otero , Manuel Pimentel , Elvira Sahuquillo Balbuena , Rosalía Piñeiro

Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (2) : 319 -330.

PDF
Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (2) : 319 -330. DOI: 10.1111/jse.13131
Research Article

Phylogenomic support for the allopolyploid origin of the northwest Iberian endemic orchid Dactylorhiza cantabrica with Hyb-Seq

Author information +
History +
PDF

Abstract

The orchid Dactylorhiza cantabrica H.A. Pedersen is a narrow endemic occurring in the western Cantabrian Mountains in northwest Spain. Previous allozyme and morphological studies suggest that it might have resulted from the hybridization of two widespread congeners: the triploid Dactylorhiza insularis and the diploid Dactylorhiza sambucina. However, this hypothesis has not been tested using multiple genetic markers necessary to analyze phylogenies in complex genera such as Dactylorhiza. In this study, the Hyb-Seq technique is applied together with the universal Angiosperms353 probe kit to sequence multiple plastid and low-copy nuclear genes. The phylogenetic relationships between the three species, estimated based on 269 and 266 nuclear genes under concatenation and coalescent-based approaches, respectively, revealed highly supported clades containing each putative parent, D. insularis and D. sambucina. The position of D. cantabrica was not well resolved, suggesting the existence of mixed inheritance, where different genes come from each parent. Phylogenetic networks, used for visualizing the conflict between nuclear gene trees, placed D. cantabrica between the two parents and revealed high levels of reticulation. In addition, nuclear genetic variation within and among species was explored with allele frequency-based tools further supporting the intermediate position of D. cantabrica and the hypothesis of a recent hybrid origin. Finally, 75 plastid genes revealed that D. insularis might have been the maternal donor. Altogether, our results point to the allopolyploid origin of D. cantabrica from D. insularis and D. sambucina, as well as to the clear genetic differentiation of the two parental species.

Keywords

allopolyploid / hybridization / Hyb-Seq / orchids / phylogeny / reticulation

Cite this article

Download citation ▾
Eva Pardo Otero, Manuel Pimentel, Elvira Sahuquillo Balbuena, Rosalía Piñeiro. Phylogenomic support for the allopolyploid origin of the northwest Iberian endemic orchid Dactylorhiza cantabrica with Hyb-Seq. Journal of Systematics and Evolution, 2025, 63(2): 319-330 DOI:10.1111/jse.13131

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aagaard SMD, Såstad SM, Greilhuber J, Moen A. 2005. A secondary hybrid zone between diploid Dactylorhiza incarnata ssp. cruenta and allotetraploid D. lapponica (Orchidaceae). Heredity 94: 488-496.

[2]

Al Tungand E, Sevgi E, Kara O, Sevgi O, Baristecimen H, Bolat Y. 2012. Comparative morphological, anatomical and habitat studies on Dactylorhiza romana (seb.) Soó subsp. romana and Dactylorhiza romana (seb.) soó subsp. georgica (Klinge) Soó ex Renz & Taub. (Orchidaceae) in Turkey. Pakistan Journal of Botany 44: 143-152.

[3]

Andrews S. 2010. FastQC: A quality control tool for high throughput sequence data. Available from https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [accessed May 2022].

[4]

Balao F, Tannhäuser M, Lorenzo MT, Hedrén M, Paun O. 2016. Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex. Heredity 116: 351-361.

[5]

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19: 455-477.

[6]

Bateman RM, Rudall PJ, Murphy ARM, Cowan RS, Devey DS, Peréz-Escobar OA. 2021. Whole plastomes are not enough: Phylogenomic and morphometric exploration at multiple demographic levels of the bee orchid clade Ophrys sect. Sphegodes. Journal of Experimental Botany 72: 654-681.

[7]

Benito Ayuso J. 2017. Estudio de las orquídeas silvestres del Sistéma Ibérico. Ph.D. Dissertation. Valencia: Universidad de Valencia.

[8]

Bernardos S, Amich F. 2002. Karyological, taxonomic and chorological notes on the Orchidaceae of the Central-Western Iberian Peninsula. Belgian Journal of Botany 135: 76-87.

[9]

Bernardos S, Amich F, Gallego F, Crespí AL. 2002. Contributions to the knowledge on the orchid flora of Northern Portugal. Journal Europäischer Orchideen 34: 35-50.

[10]

Bernardos S, Tyteca D, Not Available NA, Amich F. 2004. Cytotaxonomic study of some taxa of the subtribe Orchidinae (Orchidoideae, Orchidaceae) from the Iberian Peninsula. Israel Journal of Plant Sciences 52: 161-170.

[11]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.

[12]

Borowiec ML. 2016. AMAS: A fast tool for alignment manipulation and computing of summary statistics. PeerJ 4: e1660.

[13]

Brandrud MK, Baar J, Lorenzo MT, Athanasiadis A, Bateman RM, Chase MW, Hedrén M, Paun O. 2020. Phylogenomic relationships of diploids and the origins of allotetraploids in Dactylorhiza (Orchidaceae). Systematic Biology 69: 91-109.

[14]

Brown MR, Abbott RJ, Twyford AD. 2024. The emerging importance of cross-ploidy hybridisation and introgression. Molecular Ecology 33: e17315.

[15]

Bullini L, Cianchi R, Arduino P, BONIS L, Mosco MC, Verardi A, Porretta D, Corrias B, Rossi W. 2001. Molecular evidence for allopolyploid speciation and a single origin of the western Mediterranean orchid Dactylorhiza insularis (Orchidaceae). Biological Journal of the Linnean Society 72: 193-201.

[16]

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: Architecture and applications. BMC Bioinformatics 10: 421.

[17]

Cameron KM, Chase MW, Whitten WM, Kores PJ, Jarrell DC, Albert VA, Yukawa T, Hills HG, Goldman DH. 1999. A phylogenetic analysis of the Orchidaceae: Evidence from rbcL nucleotide sequences. American Journal of Botany 86: 208-224.

[18]

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972-1973.

[19]

Chumová Z, Záveská E, Hloušková P, Ponert J, Schmidt PA, Čertner M, Mandáková T, Trávníček P. 2021. Repeat proliferation and partial endoreplication jointly shape the patterns of genome size evolution in orchids. The Plant Journal 107: 511-524.

[20]

Cortizo C, Sahuquillo E. 2006. Guía das orquídeas de Galicia. A Coruña, Spain: Baía Edicións.

[21]

Criscuolo A, Gribaldo S. 2010. BMGE (Block Mapping and Gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evolutionary Biology 10: 210.

[22]

Crowl AA, Myers C, Cellinese N. 2017. Embracing discordance: Phylogenomic analyses provide evidence for allopolyploidy leading to cryptic diversity in a Mediterranean Campanula (Campanulaceae) clade. Evolution 71: 913-922.

[23]

De Hert K, Jacquemyn H, Van Glabeke S, Roldán-Ruiz I, Vandepitte K, Leus L, Honnay O. 2012. Reproductive isolation and hybridization in sympatric populations of three Dactylorhiza species (Orchidaceae) with different ploidy levels. Annals of Botany 109: 709-720.

[24]

Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution 24: 332-340.

[25]

Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43: 491-498.

[26]

Diana S. 1997. Sulla presenza di poliembrionia in Dactylorhiza insularis (Sommier) Landw. (Orchidaceae). Bollettino della Società Sarda di Scienze Naturali 31: 201-205.

[27]

Donkpegan ASL, Piñeiro R, Heuertz M, Duminil J, Daïnou K, Doucet J-L, Hardy OJ. 2020. Population genomics of the widespread African savannah trees Afzelia africana and Afzelia quanzensis reveals no significant past fragmentation of their distribution ranges. American Journal of Botany 107: 498-509.

[28]

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.

[29]

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology 14: 2611-2620.

[30]

Ewels P, Magnusson M, Lundin S, Käller M. 2016. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32: 3047-3048.

[31]

Freudenstein JV, Chase MW. 2015. Phylogenetic relationships in Epidendroideae (Orchidaceae), one of the great flowering plant radiations; progressive specialization and diversification. Annals of Botany 115: 665-681.

[32]

Hedrén M, Nordström S, Bateman RM. 2011. Plastid and nuclear DNA marker data support the recognition of four tetraploid marsh orchids (Dactylorhiza majalis s.l., Orchidaceae) in Britain and Ireland, but require their recircumscription. Biological Journal of the Linnean Society 104: 107-128.

[33]

Hedrén M, Nordström S, Hovmalm HAP, Pedersen , Hansson S. 2007. Patterns of polyploid evolution in Greek marsh orchids (Dactylorhiza; Orchidaceae) as revealed by allozymes, AFLPs, and plastid DNA data. American Journal of Botany 94: 1205-1218.

[34]

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518-522.

[35]

Hodač L, Klatt S, Hojsgaard D, Sharbel TF, Hörandl E. 2019. A little bit of sex prevents mutation accumulation even in apomictic polyploid plants. BMC Evolutionary Biology 19: 170.

[36]

Hojsgaard D, Hörandl E. 2015. A little bit of sex matters for genome evolution in asexual plants. Frontiers in Plant Science 6: 82.

[37]

Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254-267.

[38]

Huson DH, Dezulian T, Klopper T, Steel MA. 2004. Phylogenetic super-networks from partial trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1: 151-158.

[39]

Inda LA, Pimentel M, Chase MW. 2012. Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: Inferences regarding timing of diversification and evolution of pollination syndromes. Annals of Botany 110: 71-90.

[40]

Jersáková J, Traxmandlová I, Ipser Z, Kropf M, Pellegrino G, Schatz B, Djordjević V, Kindlmann P, Renner SS. 2015. Biological flora of Central Europe: Dactylorhiza sambucina (L.) Soó. Perspectives in Plant Ecology, Evolution and Systematics 17: 318-329.

[41]

Johnson MG, Gardner EM, Liu Y, Medina R, Goffinet B, Shaw AJ, Zerega NJC, Wickett NJ. 2016. HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Applications in Plant Sciences 4: 1600016-1600018.

[42]

Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, Devault A, Eiserhardt WL, Epitawalage N, Forest F, Kim JT, Leebens-Mack JH, Leitch IJ, Maurin O, Soltis DE, Soltis PS, Wong GK, Baker WJ, Wickett NJ. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology 68: 594-606.

[43]

Junier T, Zdobnov EM. 2010. The Newick utilities: High-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26: 1669-1670.

[44]

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587-589.

[45]

Kamneva OK, Syring J, Liston A, Rosenberg NA. 2017. Evaluating allopolyploid origins in strawberries (Fragaria) using haplotypes generated from target capture sequencing. BMC Evolutionary Biology 17: 180.

[46]

Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.

[47]

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. 2015. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15: 1179-1191.

[48]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760.

[49]

Li MM, Su QL, Zu JR, Xie L, Wei Q, Guo HR, Chen J, Zeng RZ, Zhang ZS. 2022. Triploid cultivars of Cymbidium act as a bridge in the formation of polyploid plants. Frontiers in Plant Science 13: 1029915.

[50]

Linder CR, Rieseberg LH. 2004. Reconstructing patterns of reticulate evolution in plants. American Journal of Botany 91: 1700-1708.

[51]

Lord RM, Richards AJ. 1977. A hybrid swarm between the diploid Dactylorhiza fuchsii (Druce) Soó and the tetraploid D. purpurella (T. & TA Steph.) Soó in Durham. Watsonia 11: 205-210.

[52]

Mai U, Mirarab S. 2018. TreeShrink: Fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics 19: 272.

[53]

McKinney GJ, Waples RK, Seeb LW, Seeb JE. 2017. Paralogs are revealed by proportion of heterozygotes and deviations in read ratios in genotyping-by-sequencing data from natural populations. Molecular Ecology Resources 17: 656-669.

[54]

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530-1534.

[55]

Mirarab S, Bayzid MS, Warnow T. 2016. Evaluating summary methods for multilocus species tree estimation in the presence of incomplete lineage sorting. Systematic Biology 65: 366-380.

[56]

Morales-Briones DF, Liston A, Tank DC. 2018. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). New Phytologist 218: 1668-1684.

[57]

Nordström S, Hedrén M. 2009. Genetic diversity and differentiation of allopolyploid Dactylorhiza (Orchidaceae) with particular focus on the Dactylorhiza majalis ssp. traunsteineri/lapponica complex. Biological Journal of the Linnean Society 97: 52-67.

[58]

Paradis E, Schliep K. 2019. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526-528.

[59]

Pedersen . 2006. Systematics and evolution of the Dactylorhiza romana/sambucina polyploid complex (Orchidaceae). Botanical Journal of the Linnean Society 152: 405-434.

[60]

Pérez-Escobar OA, Bogarín D, Przelomska NAS, Ackerman JD, Balbuena JA, Bellot S, Bühlmann RP, Cabrera B, Cano JA, Charitonidou M, Chomicki G, Clements MA, Cribb P, Fernández M, Flanagan NS, Gravendeel B, Hágsater E, Halley JM, Hu A-Q, Jaramillo C, Mauad AV, Maurin O, Müntz R, Leitch IJ, Li L, Negrão R, Oses L, Phillips C, Rincon M, Salazar GA, Simpson L, Smidt E, Solano-Gomez R, Parra-Sánchez E, Tremblay RL, van den Berg C, Tamayo BSV, Zuluaga A, Zuntini AR, Chase MW, Fay MF, Condamine FL, Forest F, Nargar K, Renner SS, Baker WJ, Antonelli A. 2024. The origin and speciation of orchids. New Phytologist 242(2): 700-716.

[61]

Pérez-Escobar OA, Dodsworth S, Bogarín D, Bellot S, Balbuena JA, Schley RJ, Kikuchi IA, Morris SK, Epitawalage N, Cowan R, Maurin O, Zuntini A, Arias T, Serna-Sánchez A, Gravendeel B, Torres Jimenez MF, Nargar K, Chomicki G, Chase MW, Leitch IJ, Forest F, Baker WJ. 2021. Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. American Journal of Botany 108(7): 1166-1180.

[62]

Pillon Y, Fay MF, Hedrén M, Bateman RM, Devey DS, Shipunov AB, van der Bank M, Chase MW. 2007. Evolution and temporal diversification of western European polyploid species complexes in Dactylorhiza (Orchidaceae). Taxon 56(4): 1185-1208.

[63]

Pina-Martins F, Silva DN, Fino J, Paulo OS. 2017. Structure_threader: An improved method for automation and parallelization of programs structure, fastStructure and MavericK on multicore CPU systems. Molecular Ecology Resources 17(6): 268-274.

[64]

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155(2): 945-959.

[65]

Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29(1): 467-501.

[66]

Rieseberg LH, Soltis DE. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants 5: 65-84.

[67]

Ruiz de Gopegui JA, Lueders UR, García L. 2018. Morphological notes on Dactylorhiza cantabrica, a fertile hybrid of D. insularis × sambucina from Palencia (Spain). Journal Europäischer Orchideen 50: 345-366.

[68]

Sánchez Pedraja O. 2005. Dactylorhiza Neck. ex Nevski. In: Aedo C, Herrero A eds. Flora Iberica. Plantas vasculares de la Península Ibérica e Islas Baleares. Madrid: Real Jardín Botánico, CSIC. XXI. 94-111, 304-312.

[69]

Schley RJ, Pennington RT, Pérez-Escobar OA, Helmstetter AJ, de la Estrella M, Larridon I, Sabino Kikuchi IAB, Barraclough TG, Forest F, Klitgård B. 2020. Introgression across evolutionary scales suggests reticulation contributes to Amazonian tree diversity. Molecular Ecology 29(21): 4170-4185.

[70]

Šlenker M, Kantor A, Marhold K, Schmickl R, Mandáková T, Lysak MA, Perný M, Caboňová M, Slovák M, Zozomová-Lihová J. 2021. Allele sorting as a novel approach to resolving the origin of allotetraploids using Hyb-Seq Data: A case study of the balkan mountain endemic Cardamine barbaraeoides. Frontiers in Plant Science 12: 659275.

[71]

Smith SA, Dunn CW. 2008. Phyutility: A phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24(5): 715-716.

[72]

Tremblay RL, Ackerman JD. 2001. Gene flow and effective population size in Lepanthes (Orchidaceae): A case for genetic drift. Biological Journal of the Linnean Society 72(1): 47-62.

[73]

Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN. 2005. Variation in sexual reproduction in orchids and its evolutionary consequences: A spasmodic journey to diversification. Biological Journal of the Linnean Society 84(1): 1-54.

[74]

Tyteca D. 1997. The orchid flora of Portugal. Journal Europäischer Orchideen 29: 185-581.

[75]

van der Auwera G, O'Connor B. 2020. Genomics in the cloud: Using Docker, GATK, and WDL in Terra. 1st ed.Sebastopol, California: O′Reilly Media.

[76]

Vázquez Álvarez P. 2017. Estudo da Bioloxía reproductiva de “Dactylorhiza cantabrica” (Orchidaceae), endemismo das montañas galegas. A Coruña: Universidade da Coruña.

[77]

Weitemier K, Straub SCK, Cronn RC, Fishbein M, Schmickl R, McDonnell A, Liston A. 2014. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences 2(9): 1400042.

[78]

Wolfe TM, Balao F, Trucchi E, Bachmann G, Gu W, Baar J, Hedrén M, Weckwerth W, Leitch AR, Paun O. 2023. Recurrent allopolyploidizations diversify ecophysiological traits in marsh orchids (Dactylorhiza majalis s.l.). Molecular Ecology 32(17): 4777-4790.

[79]

Yu G. 2020. Using ggtree to visualize data on tree-like structures. Current Protocols in Bioinformatics 69(1): 96.

[80]

Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19(S6): 153.

[81]

Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. 2012. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28(24): 3326-3328.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/