Cenozoic Ampelopsis and Nekemias leaves (Vitaceae, Ampelopsideae) from Eurasia: Paleobiogeographic and paleoclimatic implications

Aixa Tosal , Alba Vicente , Thomas Denk

Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (2) : 379 -400.

PDF
Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (2) : 379 -400. DOI: 10.1111/jse.13126
Research Article

Cenozoic Ampelopsis and Nekemias leaves (Vitaceae, Ampelopsideae) from Eurasia: Paleobiogeographic and paleoclimatic implications

Author information +
History +
PDF

Abstract

We describe a new species of Ampelopsideae (Vitaceae), Nekemias mucronata sp. nov., from the Rupelian of Cervera (Spain) and revise another fossil species, Ampelopsis hibschii, originally described from Germany. Comparison with extant Ampelopsideae suggests that the North American species Nekemias arborea is most similar to Nekemias mucronata while the East Mediterranean Ampelopsis orientalis is the closest living relative of A. hibschii. Our review of fossil data indicates that, during the Eocene, four species of Ampelopsideae occurred in Eurasia, that is, N. mucronata in the Czech Republic, A. hibschii in Kazakhstan, and two fossil species in the Far East (Ampelopsis cercidifolia and Ampelopsis protoheterophylla). In the Oligocene, a new species, Ampelopsis schischkinii, appeared in Kazakhstan; meanwhile, N. mucronata spread eastwards and southwards, and A. hibschii mainly grew in Central Europe. In the late Oligocene, N. mucronata became a relict in the Iberian Peninsula and Nekemias might have persisted in Western Eurasia until the latest Miocene (“Ampelopsisabkhasica). The last occurrence of A. hibschii was in the Middle Miocene in Bulgaria, probably a refuge of humid temperate taxa, along with Ampelopsis aff. cordata. Carpological remains suggest that this lineage persisted in Europe at least until the Pleistocene. Our data confirm previous notions of the North Atlantic and Bering land bridges being important dispersal routes for Ampelopsideae. However, such dispersion probably occurred during the Paleogene rather than the Neogene, as previously suggested. A single species of Ampelopsideae, A. orientalis, has survived in Western Eurasia, which appears to have been linked to a biome shift.

Keywords

Cenozoic / leaf fossils / paleobiogeography / paleoclimate / Vitaceae / Western Eurasia

Cite this article

Download citation ▾
Aixa Tosal, Alba Vicente, Thomas Denk. Cenozoic Ampelopsis and Nekemias leaves (Vitaceae, Ampelopsideae) from Eurasia: Paleobiogeographic and paleoclimatic implications. Journal of Systematics and Evolution, 2025, 63(2): 379-400 DOI:10.1111/jse.13126

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akgün F, Akkiraz MS, Üçbaş SD, Bozcu M, KAPAN S, Bozcu A. 2013. Oligocene vegetation and climate characteristics in north-west Turkey: Data from the south-western part of the Thrace Basin. Turkish Journal of Earth Sciences 22: 277-303.

[2]

Akhmetiev MA. 2007. Paleocene and Eocene floras of Russia and adjacent regions: Climatic conditions of their development. Paleontological Journal 41(11): 1032-1039.

[3]

Anadón P, Cabrera L, Colldeforns B, Sáez A. 1989. Los sistemas lacustres del Eoceno superior y Oligoceno del sector oriental de la Cuenca del Ebro. Acta Geológica Hispánica 24: 205-230.

[4]

Averyanova AL. 2012. Upper Eocene flora of Zaissan depression (Eastern Kazakhstan). Ph.D. Dissertation. Saint Petersburg: Saint Petersburg State University. (In Russian).

[5]

Averyanova A, Tarasevich V, Popova S, Utescher T, Li S-F, Mosbrugger V, Xing Y. 2021. Rupelian Kazakhstan floras in the context of early Oligocene climate and vegetation in Central Asia. Terra Nova 33(4): 383-399.

[6]

Barberà X, Cabrera L, Marzo M, Parés JM, Agustı́ J. 2001. A complete terrestrial Oligocene magnetobiostratigraphy from the Ebro Basin, Spain. Earth and Planetary Science Letters 187(1-2): 1-16.

[7]

Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR. 2002. Homologies in leaf form inferred from KNOXI gene expression during development. Science 296(5574): 1858-1860.

[8]

Bozukov V. 2000. Miocene macroflora of the Satovcha Graben (Western Rhodopes). Phytologia Balcanica 6: 15-30.

[9]

Bozukov V, Utescher T, Ivanov D. 2009. Late Eocene to Early Miocene climate and vegetation of Bulgaria. Review of Palaeobotany and Palynology 153(3-4): 360-374.

[10]

Budantsev LYu. 1997. Pozdneeotsenovaja flora Zapadnoj Kamchatki. Trudy Botanicheskogo Instituta Rossijskoj Akademii Nauk 19: 1-115.

[11]

Bůžek Č, Holý F, Kvaček Z. 1966. Zpráva o paleontologickém výzkumu vulkanogenního souvrství Českého středohoří. Zprávy o geologických výzkumech v roce 1964: 248-250.

[12]

Bůžek Č, Kvaček Z, Walther H. 1978. Tertiary floras from the surroundings of Kundratice in relation to the volcanic phases of the České Středohoří Mts. Věstník Ústředního Ústavu Geologického 53: 347-356.

[13]

Bůžek Č, Kvaček Z, Walther H. 1981. Blattreste von Vitaceen aus dem Oligozän Mitteleuropas. Palaeontographica Abteilung B 175: 126-135.

[14]

Casas-Gallego M, Postigo-Mijarra J, Rivas-Carballo R, Valle-Hernández MF, Morín-de Pablos J, Barrón E. 2021. Early evidence of continental aridity and open habitat grasslands in Europe as revealed by the Middle Miocene microflora of the Madrid Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 581: 110603.

[15]

Chen I. 2009. History of Vitaceae inferred from morphology-based phylogeny and the fossil record of seeds. Ph.D. Dissertation. Gainesville: University of Florida.

[16]

Chen I, Manchester SR. 2007. Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. American Journal of Botany 94(9): 1534-1553.

[17]

Chen ZD, Ren H, Wen J. 2007. Vitaceae. In: Wu Z-Y, Hong D-Y, Raven PH eds. Flora of China 12. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. 173-222.

[18]

Colldeforns B, Anadón P, Cabrera L. 1994. Nuevos datos sobre la litoestratigrafía del Eoceno-Oligoceno inferior de la zona suroriental de la Cuenca del Ebro (Sector Pontils-Montblanc, provincias de Tarragona y Barcelona). Geogaceta 16: 98-101.

[19]

Collinson ME, Manchester SR, Wilde V. 2012. Fossil fruits and seeds of the Middle Eocene Messel biota, Germany. Abhandlungen der Senckenberg gesellschaft für naturforschung 570: 1-251.

[20]

Costa E, Garcés M, López-Blanco M, Beamud E, Gómez-Paccard M, Larrasoaña JC. 2010. Closing and continentalization of the South Pyrenean foreland Basin (NE Spain). Magnetochronological constraints. Basin Research 22(6): 904-917.

[21]

Denk T, Bouchal JM, Güner HT, Coiro M, Butzmann R, Pigg KB, Tiffney BH. 2023. Cenozoic migration of a desert plant lineage across the North Atlantic. New Phytologist 238(6): 2668-2684.

[22]

Depape G, Brice D. 1965. La flore oligocène de Cervera (Espagne). Données complémentaires. Annales de la Société géologique du Nord 85: 111-117.

[23]

Ellis B, Daly DC, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL. 2009. Manual of leaf architecture. New York: The New York Botanical Garden.

[24]

Engelhardt H. 1876. Tertiärpflanzen aus dem Leitmeritzer Mittelgebirge. Nova Acta Kaiserlichen Leopoldinisch-Carolinischen Deutsche Akademie der Naturforscher Leopoldina 38: 341-440.

[25]

Engelhardt H. 1885. Die Tertiärflora des Jesuitengrabens bei Kundratitz in Nordböhmen. Nova Acta Academiae Caesareae Leopoldino-Carolinae 48: 259-408.

[26]

Erdei B, Utescher T, Hably L, Tamás J, Roth-Nebelsick A, Grein M. 2012. Early Oligocene continental climate of the Palaeogene Basin (Hungary and Slovenia) and the surrounding area. Turkish Journal of Earth Sciences 21: 153-186.

[27]

Fang J, Wang Z, Tang Z. 2011. Atlas of woody plants in China. Beijing: Higher Education Press.

[28]

Fernández-Marrón MT. 1971. Estudio paleoecológico y revisión sistemática de la flora fósil del Oligoceno español. Ph.D. Dissertation. Madrid: Universidad Complutense de Madrid.

[29]

Gray SR. 2019. Morphological and morphometric analysis of Nekemias arborea and Ampelopsis aconitifolia (Vitaceae). Ph.D. Dissertation. Iowa: University of Northern Iowa.

[30]

Hearn DJ, Evans M, Wolf B, McGinty M, Wen J. 2018. Dispersal is associated with morphological innovation, but not increased diversification, in Cyphostemma (Vitaceae). Journal of Systematics and Evolution 56(4): 340-359.

[31]

Hu HH, Chaney RW. 1940. A miocene flora from Shantung Province, China: Part I. Introduction and systematic considerations. Washington, DC: Carnegie Institution of Washington. 507: 1-147.

[32]

Iljinskaja IA. 1957. Iskopaemaja flora gory Kiin-Kerish Zajsanskogo rajona (Fossil flora of the Kiin-Kerish mountain of the Zaisan region). In: Dorofeev PI ed. Sbornik pamjati Afrikana Nikolaevicha Krishtofovicha (Collection of papers to the memory of Afrikan Nikolaevich Krishtofovich). Moscow and Leningrad: Publishing House NAUKA of the SSSR. 235-248.

[33]

Iljinskaja IA. 1963. Ampelopsis schischkinii Iljinskaja sp. n. In: Takhtajan AI ed. Palaeobotanica IV. St. Petersburg: Russian Academy of Sciences. 178-179.

[34]

Ingrouille MJ, Chase MW, Fay MF, Bowman D, van der Bank M, Bruijn ADE. 2002. Systematics of Vitaceae from the viewpoint of plastid rbcL DNA sequence data. Botanical Journal of the Linnean Society 138(4): 421-432.

[35]

Jones AW, Doughan BG, Gerrath JM, Kang J. 2013. Development of leaf shape in two North American native species of Ampelopsis (Vitaceae). Botany 91(12): 857-865.

[36]

Kayseri-Özer MS, Akgün F, Mayda S, Kaya T. 2014. Palynofloras and vertebrates from Muðla-Ören region (SW Turkey) and palaeoclimate of the middle Burdigalian-Langhian period in Turkey. Bulletin of Geosciences 89: 137-162.

[37]

Kayseri-Özer MS, Emre T. 2022. Palaeovegetation and paleoclimate in the SW Turkey—A study based on the early-middle Miocene coal-bearing sediments from the Büyük Menderes Graben. Review of Palaeobotany and Palynology 297: 104560.

[38]

Kayseri-Özer MS, Karadenizli L, Akgün F, Oyal N, Saraç G, Şen Ş, Tunoğlu C, Tuncer A. 2017. Palaeoclimatic and palaeoenvironmental interpretations of the Late Oligocene, Late Miocene-Early Pliocene in the Çankırı-Çorum Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 467: 16-36.

[39]

Knobloch E, Konzalová M, Kvaček Z. 1996. Die obereozäne Flora der Staré Sedlo-Schichtenfolge in Böhmen (Mitteleuropa). Rozpravy Českého geologického ústavu 49: 1-260.

[40]

Kodrul TM. 1999. Fitostratigrafija paleogena Juzhnogo Sakhalina. Trudy Geologicheskogo Instituta Rossijskoj Akademii Nauk 519: 1-48.

[41]

Körner C. 2013. Vegetation of the earth. In: Bresinsky A, Körner C, Kadereit JW, Neuhaus G, Sonnewald U eds. Strasburger's plant sciences: Including prokaryotes and fungi. Berlin and Heidelberg: Springer. 1217-1262.

[42]

Kovar-Eder J, Kvaček Z, Teodoridis V, Mazouch P, Collinson ME. 2022. Flora, vegetation and climate assessment of the Early/Middle Miocene Parschlug flora indicates a distinctly seasonal climate. Fossil Imprint 78(1): 80-144.

[43]

Krassilov VA. 1984. New paleobotanical data on origin and early evolution of angiospermy. Annals of the Missouri Botanical Garden 71(2): 577-592.

[44]

Kunzmann L, Moraweck K, Müller C, Schröder I, Wappler T, Grein M, Roth-Nebelsick A. 2019. A Paleogene leaf flora (Profen, Sachsen-Anhalt, Germany) and its potentials for palaeoecological and palaeoclimate reconstructions. Flora 254: 71-87.

[45]

Kvaček Z. 2002. Late Eocene landscape, ecosystems and climate in northern Bohemia with reference to locality of Kučlín near Bílina. Bulletin of the Czech Geological Survey 77: 217-236.

[46]

Kvaček Z. 2010. Forest flora and vegetation of the European early Palaeogene—A review. Bulletin of Geosciences 85: 63-76.

[47]

Kvaček Z, Teodoridis V. 2007. Tertiary macrofloras of the Bohemian Massif: A review with correlations within Boreal and Central Europe. Bulletin of Geosciences 82: 383-408.

[48]

Kvaček Z, Teodoridis V. 2011. The late eocene flora of kučlín near bílina in north bohemia revisited. Acta Musei Nationalis Pragae Series B—Historia Naturalis 67: 83-144.

[49]

Kvaček Z, Teodoridis V, Zajícová J. 2015. Revision of the early Oligocene flora of Hrazený hill (formerly Pirskenberg) in Knížecí near Šluknov, North Bohemia. Acta Musei Nationalis Pragae, Series B, Historia Naturalis/Sborník Národního muzea řada B, přírodní vědy 71: 55-102.

[50]

Kvaček Z, Walther H. 1994. The Oligocene volcanic flora of Suletice-Berand near Ústí nad Labem, North Bohemia—A review. Acta Musei nationalis Pragae, Series B —Historia Naturalis 50: 25-54.

[51]

Kvaček Z, Walther H. 2004. Oligocene flora of Bechlejovice at Dĕčin from the neovolcanic area of the Česke středohoří Mountains, Czech Republic. Acta Musei Nationalis Pragae, Series B—Historia Naturalis 60: 9-60.

[52]

Kvaček Z, Walther H. 2010. European Tertiary Fagaceae with chinquapin-like foliage and leaf epidermal characteristics. Feddes Repertorium 121(7-8): 248-267.

[53]

Liu X-Q, Ickert-Bond SM, Chen L-Q, Wen J. 2013. Molecular phylogeny of Cissus L. of Vitaceae (the grape family) and evolution of its pantropical intercontinental disjunctions. Molecular Phylogenetics and Evolution 66(1): 43-53.

[54]

Lombardi J. 2015. New combinations for the South American Cissus striata clade (Vitaceae). Phytotaxa 227(3): 295-298.

[55]

Lu L, Cox CJ, Mathews S, Wang W, Wen J, Chen Z. 2018. Optimal data partitioning, multispecies coalescent and Bayesian concordance analyses resolve early divergences of the grape family (Vitaceae). Cladistics 34(1): 57-77.

[56]

Mai DH. 1995. Tertiäre vegetationsgeschichte Europas: Methoden und Ergebnisse. Stuttgart: Gustav Fischer Verlag, Jena.

[57]

Mai DH, Walther H. 1978. Die Floren der Haselbacher Serie im Weißelster-Becken (Bezirk Leipzig, DDR). Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 28: 1-200.

[58]

Mai DH, Walther H. 1984. Die obereozänen Floren des Weißelster-Beckens und seiner Randgebiete. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 33: 1-260.

[59]

Makulbekov NM. 1972. Eocene flora of the North Kazakhstan. Alma Ata: Publishing house NAUKA of Kazakh SSR. 1-177

[60]

Manchester SR. 1994. Fruits and seeds of the middle Eocene Nut Beds flora, Clarno Formation, Oregon. Palaeontographica Americana 58: 1-205.

[61]

Manchester SR. 2020. Morphology and affinities of Ampelocissites seeds (Vitaceae: Ampelopsis clade) from the Paleogene of Texas, USA. Systematic Botany 45(3): 478-482.

[62]

Manchester SR, Kapgate DK, Wen J. 2013. Oldest fruits of the grape family (Vitaceae) from the Late Cretaceous Deccan Cherts of India. American Journal of Botany 100(9): 1849-1859.

[63]

Manchester SR, McIntosh WC. 2007. Late Eocene silicified fruits and seeds from the John Day Formation near Post, Oregon. PaleoBios 27: 7-17.

[64]

Moreno-Domínguez R, Postigo-Mijarra J, Barrón E. 2021. Palaeoclimatic reconstruction for the Late Oligocene La Val fossil site (Estadilla, Huesca, Spain) based on CLAMP and LMA. Palaeogeography, Palaeoclimatology, Palaeoecology 567: 110302.

[65]

Mosbrugger V, Utescher T, Dilcher D. 2005. Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences USA 102: 14964-14969.

[66]

Nie Z-L, Sun H, Manchester SR, Meng Y, Luke Q, Wen J. 2012. Evolution of the intercontinental disjunctions in six continents in the Ampelopsis clade of the grape family (Vitaceae). BMC Evolutionary Biology 12(1): 17.

[67]

Pavlyutkin BI, Chekryzhov IY, Petrenko TI. 2014. Geologiya i flory nizhnego oligotsena Primor′ya (Geology and Floras from the Lower Oligocene of Primorye). Vladivostok: Dal′nauka.

[68]

Peel MC, Finlayson BL, McMahon TA. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11(5): 1633-1644.

[69]

Pini R, Bertini A, Martinetto E, Vassio E. 2014. La flora del Pleistocene dell′Italia settentrionale the Pleistocene flora of northern Italy. In: Kustatscher E, Roghi G, Bertini A, Miola A eds. Palaeobotany of Italy. Bolzano: Naturmuseum Sudtirol. 290-307.

[70]

Popov SV, Akhmetiev MA, Bugrova EM, Lopatin AV, Amitrov OV, Andreeva-Grigorovich AS, Zaporozhets NI, Zherikhin VV, Krasheninnikov VA, Nikolaeva IA, Sytchevskaya EK, Shcherba IG. 2001. Biogeography of the northern peri-Tethys from the late Еocene to the early Miocene: Part 1. Late Eocene. Paleontological Journal 36: 185-259.

[71]

Popov SV, Akhmetiev MA, Bugrova EM, Lopatin AV, Amitrov OV, Andreeva-Grigorovich AS, Zaporozhets NI, Zherikhin VV, Krasheninnikov VA, Nikolaeva IA, Sytchevskaya EK, Shcherba IG. 2002. Biogeography of the northern peri-Tethys from the late Еocene to the early Miocene: Part 2. Early Oligocene. Paleontological Journal 35: 1-68.

[72]

Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kovac M. 2004. Lithological-paleogeographic maps of Paratethys. 10 Maps. Late Eocene to Pliocene. Courier Forschungsinstitut Senckenberg 250: 1-46.

[73]

Postigo-Mijarra J, Altolaguirre Y, Moreno-Domínguez R, Barrón E, Casas-Gallego M. 2022. Climatic reconstruction at the early Miocene La Rinconada mine (Ribesalbes-Alcora Basin, eastern Spain) based on Coexistence Approach, CLAMP and LMA analysis. Review of Palaeobotany and Palynology 304: 104714.

[74]

Puigdefàbregas C, Muñoz JA, Vergés J. 1992. Thrusting and foreland basin evolution in the Southern Pyrenees. In: Mcclay KR ed. Thrust tectonics. Netherlands: Springer. 247-254.

[75]

Ren H, Lu LM, Soejima A, Luke Q, Zhang DX, Chen ZD, Wen J. 2011. Phylogenetic analysis of the grape family (Vitaceae) based on the noncoding plastid trnC-petN, trnH-psbA, and trnL-F sequences. Taxon 60(3): 629-637.

[76]

Rossetto M, Jackes BR, Scott KD, Henry RJ. 2001. Intergeneric relationships in the Australian Vitaceae: New evidence from cpDNA analysis. Genetic Resources and Crop Evolution 48(3): 307-314.

[77]

Rossetto M, Crayn DM, Jackes BR, Porter C. 2007. An updated estimate of intergeneric phylogenetic relationships in the Australian VitaceaeThis article is one of a selection of papers presented at the symposium onVitisat the XVII International Botanical Congress held in Vienna, Austria, in 2005. Canadian Journal of Botany 85(8): 722-730.

[78]

Rossetto M, Jackes B, Scott KD, Henry RJ. 2002. Is the genus Cissus (Vitaceae) monophyletic: Evidence from plastid and nuclear ribosomal DNA. Systematic Botany 27: 522-533.

[79]

Roth-Nebelsick A, Utescher T, Mosbrugger V, Diester-Haass L, Walther H. 2004. Changes in atmospheric CO2 concentrations and climate from the Late Eocene to Early Miocene: Palaeobotanical reconstruction based on fossil floras from Saxony, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 205(1-2): 43-67.

[80]

Rubel F, Brugger K, Haslinger K, Auer I. 2017. The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800-2100. Meteorologische Zeitschrift 26(2): 115-125.

[81]

Sanjuan J, Martin-Closas C, Costa E, Barbera X, Garces M. 2014. Calibration of Eocene-Oligocene charophyte biozones. Stratigraphy 11(1): 61-81.

[82]

Sanjuan J, Martín-Closas C, Serra-Kiel J, Gallardo H. 2012. Stratigraphy and biostratigraphy (charophytes) of the marine-terrestrial transition in the Upper Eocene of the NE Ebro Basin (Catalonia, Spain). Geologica Acta 10: 19-31.

[83]

Sanz de Siria Catalan A. 1992. Estudio de la macroflora oligocena de las cercanías de Cervera; Colección Martí Madern del Museo de Geología de Barcelona. Treballs del Museu de Geologia de Barcelona 2: 143-170.

[84]

Scotese CR. 2013a. Map Folio 11 late Middle Eocene, (Bartonian, 38.8 Ma). Technical Report.

[85]

Scotese CR. 2013b. Map Folio 9, Early Oligocene, Rupelian, 31.1 Ma, PALEOMAP PaleoAtlas for ArcGIS. Volume 1, Cenozoic, PALEOMAP Project, Evanston, IL.

[86]

Scotese CR, Boucot AJ, Chen X. 2014. Atlas of Phanerozoic Climatic Zones (Mollweide Projection). Volumes 1-6. PALEOMAP Project PaleoAtlas for ArcGIS, PALEOMAP Project, Evanston, IL.

[87]

Soejima A, Wen J. 2006. Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. American Journal of Botany 93(2): 278-287.

[88]

Süssenguth K. 1953. Vitaceae. In: Engler A, Prantl K eds. Die natürlichen Pflanzenfamilien. Berlin: Duncker & Humblot. 174-333.

[89]

Syabryaj S, Utescher T, Molchanoff S, Bruch AA. 2007. Vegetation and palaeoclimate in the Miocene of Ukraine. Palaeogeography, Palaeoclimatology, Palaeoecology 253(1-2): 153-168.

[90]

Tanrattana M, Boura A, Jacques FMB, Villier L, Fournier F, Enguehard A, Cardonnet S, Voland G, Garcia A, Chaouch S, De Franceschi D. 2020. Climatic evolution in Western Europe during the Cenozoic: Insights from historical collections using leaf physiognomy. Geodiversitas 42(11): 151-174.

[91]

Teodoridis V, Kvaček Z. 2015. Palaeoenvironmental evaluation of Cainozoic plant assemblages from the Bohemian Massif (Czech Republic) and adjacent Germany. Bulletin of Geosciences 90: 695-720.

[92]

Teodoridis V, Kvaček Z, Mach K, Sakala J, Daškova J, Rojik P. 2017. Fossil Comptonia difformis (Sternberg) Berry (Myricaceae) from the type area in North Bohemia with comments on foliage anatomy and associated fruits. Bulletin of Geosciences 92: 185-210.

[93]

Tosal A, Martín-Closas C. 2016. Taphonomy and palaeoecology of the Oligocene flora from Cervera (Catalonia, Spain) and their implication in palaeoclimatic reconstruction. Review of Palaeobotany and Palynology 233: 93-103.

[94]

Tosal A, Sanjuan J, Martín-Closas C. 2019a. Foliar adaptations of Rhus sp. nov. from the Oligocene of Cervera (Catalonia, Spain). Palaeoclimatic implication. Review of Palaeobotany and Palynology 261: 67-80.

[95]

Tosal A, Valero L, Sanjuan J, Martín-Closas C. 2019b. Influence of short- and long-term climatic cycles on floristic change across the Eocene-Oligocene boundary in the Ebro Basin (Catalonia, Spain). Comptes Rendus Palevol 18: 925-947.

[96]

Uhl D, Bruch AA, Traiser C, Klotz S. 2006. Palaeoclimate estimates for the Middle Miocene Schrotzburg flora (S Germany): A multi-method approach. International Journal of Earth Sciences 95(6): 1071-1085.

[97]

Utescher T, Djordjevic-Milutinovic D, Bruch A, Mosbrugger V. 2007. Palaeoclimate and vegetation change in Serbia during the last 30 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology 253(1-2): 141-152.

[98]

Velitzelos D, Bouchal JM, Denk T. 2014. Review of the Cenozoic floras and vegetation of Greece. Review of Palaeobotany and Palynology 204: 56-117.

[99]

Vergés J, Marzo M, Santaeulàlia T, Serra-Kiel J, Burbank DW, Muñoz JA, Gimenez-Montsant J. 1998. Quantified vertical motions and tectonic evolution of the SE Pyrenean foreland basin. In: Mascle A, Puigdefàbregas C, Luterbacher HP, Fernàndez M eds. Cenozoic foreland basins of western Europe. London: Geological Society, Special publication. 134: 107-134.

[100]

Walther H, Kvaček Z. 2007. Early Oligocene flora of Seifhennersdorf (Saxony). Acta Musei Nationalis Pragae, Series B—Historia Naturalis 63: 85-17.

[101]

Wen J. 2007. Vitaceae. In: Kubitzki K ed. The families and genera of vascular plants. Berlin: Springer. 9: 467-479.

[102]

Wen J, Boggan J, Nie Z-L. 2014. Synopsis of Nekemias Raf., a segregate genus from Ampelopsis Michx. (Vitaceae) disjunct between eastern/southeastern Asia and eastern North America, with ten new combinations. PhytoKeys 42: 11-19.

[103]

Wen J, Lu L-M, Nie Z-L, Liu X-Q, Zhang N, Ickert-Bond S, Gerrath J, Manchester SR, Boggan J, Chen Z-D. 2018. A new phylogenetic tribal classification of the grape family (Vitaceae). Journal of Systematics and Evolution 56(4): 262-272.

[104]

Wen J, Nie Z-L, Soejima A, Meng Y. 2007. Phylogeny of Vitaceae based on the nuclear GAI1gene sequences. Canadian Journal of Botany 85(8): 731-745.

[105]

Wen J, Xiong Z, Nie ZL, Mao L, Zhu Y, Kan XZ, Ickert-Bond SM, Gerrath J, Zimmer EA, Fang XD. 2013. Transcriptome sequences resolve deep relationships of the grape family. PLoS One 8(9): e74394.

[106]

Willis K, McElwain J. 2014. The evolution of plants. USA: Oxford University Press: 1-408.

[107]

Winterscheid H, Kvaček Z. 2014. Revision of the flora of the late Oligocene lake deposits of Orsberg near Unkel on Rhine (Rhineland-Palatinate, Germany). Palaeontographica Abteilung B 291(1-6): 1-83.

[108]

Zhilin SG. 1989. History of the development of the temperate forest flora in Kazakhstan U.S.S.R. from the Oligocene to the Early Miocene. The Botanical Review 55(4): 205-330.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/