Genomic differentiation and gene flow among Rattus species distributed in China and adjacent regions

Ning Liu , Xin-Lai Wu , Ruo-Bing Zhang , Jin Wang , Qi-Sen Yang , Ji-Long Cheng , Zhi-Xin Wen , Lin Xia , Alexei V. Abramov , De-Yan Ge

Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (2) : 307 -318.

PDF
Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (2) : 307 -318. DOI: 10.1111/jse.13123
Research Article

Genomic differentiation and gene flow among Rattus species distributed in China and adjacent regions

Author information +
History +
PDF

Abstract

The wild rats in the genus Rattus represent a group of murids characterized by rapid lineage diversification but limited morphological variation. Within this genus, there are several commensal species with high invasive capacity, such as Rattus norvegicus and R. rattus, which pose a global threat. Investigating the mechanisms behind their adaptive evolution is of utmost importance. In this study, we conducted morphological study and whole-genome sequencing on Rattus species distributed in China and adjacent regions to gain insights into morphological differentiation, as well as genomic divergence and gene flow using assembled mitochondrion genome and high-quality single nucleotide polymorphisms. Despite their morphological similarity and large overlap in morphospace, our analyses revealed significant genetic differentiation at the genomic level among Rattus species in China and adjacent regions. Specifically, intraspecific differentiation was observed in R. nitidus, R. norvegicus, and R. tanezumi, which may be related to habitat heterogeneity and geographic isolation. We hypothesize that as invasive rats expand their habitat, the diversification of ecological environments might lead to more environmentally adapted evolution and accelerated genetic differentiation. Furthermore, Dsuite and TreeMix analyses detected substantial introgression among different Rattus species, particularly evident between R. norvegicus and R. tanezumi. Strong gene flow signals suggest frequent hybridization events among these species, which may facilitate the acquisition of new environmental adaptability during their expansion into new territories. This study provides a preliminary analysis that serves as a foundation for a more comprehensive investigation into the rapid lineage diversification and adaptive introgression among Rattus species.

Keywords

gene flow / genetic differentiation / invasive species / phylogenetic analysis / Rattus

Cite this article

Download citation ▾
Ning Liu, Xin-Lai Wu, Ruo-Bing Zhang, Jin Wang, Qi-Sen Yang, Ji-Long Cheng, Zhi-Xin Wen, Lin Xia, Alexei V. Abramov, De-Yan Ge. Genomic differentiation and gene flow among Rattus species distributed in China and adjacent regions. Journal of Systematics and Evolution, 2025, 63(2): 307-318 DOI:10.1111/jse.13123

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexander DH, Lange K. 2011. Enhancements to the admixture algorithm for individual ancestry estimation. BMC Bioinformatics 12: 246.

[2]

Aplin KP, Suzuki H, Chinen AA, Chesser RT, Ten Have J, Donnellan SC, Austin J, Frost A, Gonzalez JP, Herbreteau V, Catzeflis F, Soubrier J, Fang YP, Robins J, Matisoo-Smith E, Bastos ADS, Maryanto I, Sinaga MH, Denys C, Van Den Bussche RA, Conroy C, Rowe K, Cooper A. 2011. Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS One 6: e26357.

[3]

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. Mitos: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69: 313-319.

[4]

Brauer CJ, Sandoval-Castillo J, Gates K, Hammer MP, Unmack PJ, Bernatchez L, Beheregaray LB. 2023. Natural hybridization reduces vulnerability to climate change. Nature Climate Change 13: 282-289.

[5]

Burgin CJ, Colella JP, Kahn PL, Upham NS. 2018. How many species of mammals are there? Journal of Mammalogy 99: 1-14.

[6]

Chen SF, Zhou YQ, Chen YR, Gu J. 2018. Fastp: An ultra-fast all-in-one fastq preprocessor. Bioinformatics 34: i884-i890.

[7]

Chen Y, Hou GM, Jing MD, Teng HJ, Liu QS, Yang XG, Wang Y, Qu JP, Shi CM, Lu L, Zhang JX, Zhang YH. 2021. Genomic analysis unveils mechanisms of northward invasion and signatures of plateau adaptation in the Asian house rat. Molecular Ecology 30: 6596-6610.

[8]

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R. 2011. The variant call format and vcftools. Bioinformatics 27: 2156-2158.

[9]

Deinum EE, Halligan DL, Ness RW, Zhang YH, Cong L, Zhang JX, Keightley PD. 2015. Recent evolution in Rattus norvegicus is shaped by declining effective population size. Molecular Biology and Evolution 32: 2547-2558.

[10]

Durand EY, Patterson N, Reich D, Slatkin M. 2011. Testing for ancient admixture between closely related populations. Molecular Biology and Evolution 28: 2239-2252.

[11]

Edgar RC. 2004. Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.

[12]

Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner-Riehl AN. 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biological Reviews 90: 236-253.

[13]

Fitak RR. 2021. OptM: Estimating the optimal number of migration edges on population trees using Treemix. Biology Methods & Protocols 6: 017.

[14]

Greve M, Pertierra LR. 2022. Opportunities for studying propagule pressure using gene flow reveal its role in accelerating biological invasions. Molecular Ecology 31: 1609-1611.

[15]

Guo HL, Teng HJ, Zhang JH, Zhang JX, Zhang YH. 2017. Asian house rats may facilitate their invasive success through suppressing brown rats in chronic interaction. Frontiers in Zoology 14: 20.

[16]

Hammer Ø, Harper DA. 2001. PAST: Paleontological statistics software package for educaton and data anlysis. Palaeontologia Electronica 4: 1.

[17]

Harper GA, Bunbury N. 2015. Invasive rats on tropical islands: Their population biology and impacts on native species. Global Ecology and Conservation 3: 607-627.

[18]

He JK, Lin SL, Li JT, Yu JH, Jiang HS. 2020. Evolutionary history of zoogeographical regions surrounding the Tibetan Plateau. Communications Biology 3: 415.

[19]

Huang DC, Zhang RZ, Kim KC, Suarez AV. 2012. Spatial pattern and determinants of the first detection locations of invasive alien species in Mainland China. PLoS One 7: e31734.

[20]

Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. 2020. Getorganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21: 241.

[21]

Jin MH, North HL, Peng Y, Liu HW, Liu B, Pan RQ, Zhou Y, Zheng WG, Liu KY, Yang B, Zhang L, Xu Q, Elfekih S, Valencia-Montoya WA, Walsh T, Cui P, Zhou YF, Wilson K, Jiggins C, Wu KM, Xiao YT. 2023. Adaptive evolution to the natural and anthropogenic environment in a global invasive crop pest, the cotton bollworm. The Innovation 4: 100454.

[22]

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.

[23]

Lefort V, Desper R, Gascuel O. 2015. Fastme 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Molecular Biology and Evolution 32: 2798-2800.

[24]

Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49: W293-W296.

[25]

Li H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27: 2987-2993.

[26]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760.

[27]

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/Map format and SAMtools. Bioinformatics 25: 2078-2079.

[28]

Liu SY, He K, Chen SD, Jin W, Murphy RW, Tang MK, Liao R, Li FJ. 2018. How many species of Apodemus and Rattus occur in China? A survey based on mitochondrial cyt b and morphological analyses. Zoological Research 39: 309-320.

[29]

Malinsky M, Matschiner M, Svardal H. 2021. Dsuite—Fast D-statistics and related admixture evidence from VCF files. Molecular Ecology Resources 21: 584-595.

[30]

Malinsky M, Svardal H, Tyers AM, Miska EA, Genner MJ, Turner GF, Durbin R. 2018. Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nature Ecology & Evolution 2: 1940-1955.

[31]

Matisoo-Smith E, Robins JH. 2004. Origins and dispersals of Pacific peoples: Evidence from mtDNA phylogenies of the Pacific rat. Proceedings of the National Academy of Sciences 101: 9167-9172.

[32]

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530-1534.

[33]

Mugula BB, Omondi SF, Curto M, Kiboi SK, Kanya JI, Egeru A, Okullo P, Meimberg H. 2023. Microsatellites reveal divergence in population genetic diversity, and structure of Osyris lanceolata (Santalaceae) in Uganda and Kenya. BMC Ecology and Evolution 23: 73.

[34]

Musser G, Carleton M. 2005. Superfamily Muroidea. Mammal species of the world: A taxonomic and geographic reference. Baltimore, Maryland, USA: The Johns Hopkins University Press. 894-1531.

[35]

Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, Genschoreck T, Webster T, Reich D. 2012. Ancient admixture in human history. Genetics 192: 1065-1093.

[36]

Pickrell JK, Pritchard JK. 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genetics 8: e1002967.

[37]

Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ. 2008. Adaptive evolution in invasive species. Trends in Plant Science 13: 288-294.

[38]

Puckett EE, Orton D, Munshi-South J. 2020. Commensal rats and humans: Integrating rodent phylogeography and zooarchaeology to highlight connections between human societies. BioEssays 42: 1900160.

[39]

Puckett EE, Park J, Combs M, Blum MJ, Bryant JE, Caccone A, Costa F, Deinum EE, Esther A, Himsworth CG, Keightley PD, Ko A, Lundkvist Å, McElhinney LM, Morand S, Robins J, Russell J, Strand TM, Suarez O, Yon L, Munshi-South J. 2016. Global population divergence and admixture of the brown rat (Rattus norvegicus). Proceedings of the Royal Society B: Biological Sciences 283: 20161762.

[40]

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. 2007. Plink: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81: 559-575.

[41]

Ralls K, Sunnucks P, Lacy RC, Frankham R. 2020. Genetic rescue: A critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biological Conservation 251: 108784.

[42]

Robins JH, McLenachan PA, Phillips MJ, Craig L, Ross HA, Matisoo-Smith E. 2008. Dating of divergences within the Rattus genus phylogeny using whole mitochondrial genomes. Molecular Phylogenetics and Evolution 49: 460-466.

[43]

Robins JH, Tintinger V, Aplin KP, Hingston M, Matisoo-Smith E, Penny D, Lavery SD. 2014. Phylogenetic species identification in Rattus highlights rapid radiation and morphological similarity of new Guinean species. PLoS One 9: e98002.

[44]

Rowe KC, Aplin KP, Baverstock PR, Moritz C. 2011. Recent and rapid speciation with limited morphological disparity in the genus Rattus. Systematic Biology 60: 188-203.

[45]

Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27: 863-864.

[46]

Shirk AJ, Landguth EL, Cushman SA. 2017. A comparison of individual-based genetic distance metrics for landscape genetics. Molecular Ecology Resources 17: 1308-1317.

[47]

Simberloff D. 2013. Invasive species: What everyone needs to know. New York, USA: Oxford University Press.

[48]

Song Y, Endepols S, Klemann N, Richter D, Matuschka FR, Shih CH, Nachman MW, Kohn MH. 2011. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Current Biology 21: 1296-1301.

[49]

Song Y, Lan ZJ, Kohn MH. 2014. Mitochondrial DNA phylogeography of the norway rat. PLoS One 9: e88425.

[50]

Tamura K, Stecher G, Kumar S. 2021. Mega11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38: 3022-3027.

[51]

Teng HJ, Zhang YH, Shi CM, Mao FB, Cai WS, Lu L, Zhao FQ, Sun ZS, Zhang JX. 2017. Population genomics reveals speciation and introgression between brown Norway rats and their sibling species. Molecular Biology and Evolution 34: 2214-2228.

[52]

Tigano A, Friesen VL. 2016. Genomics of local adaptation with gene flow. Molecular Ecology 25: 2144-2164.

[53]

Valencia-Montoya WA, Elfekih S, North HL, Meier JI, Warren IA, Tay WT, Gordon KHJ, Specht A, Paula-Moraes SV, Rane R, Walsh TK, Jiggins CD. 2020. Adaptive introgression across semipermeable species boundaries between local Helicoverpa zea and invasive Helicoverpa armigera moths. Molecular Biology and Evolution 37: 2568-2583.

[54]

Verneau O, Catzeflis F, Furano AV. 1998. Determining and dating recent rodent speciation events by using l1 (line-1) retrotransposons. Proceedings of the National Academy of Sciences 95: 11284-11289.

[55]

Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.

[56]

Wu XL, Mu DP, Yang QS, Zhang Y, Li YC, Feijó A, Cheng JL, Wen ZX, Lu L, Xia L, Zhou ZJ, Qu YH, Ge DY. 2023. Comparative genomics of widespread and narrow-range white-bellied rats in the Niviventer niviventer species complex sheds light on invasive rodent success. Zoological Research 44: 1052-1063.

[57]

Xie F, Wan T, Tang KY, Wang XM, Chen SD, Liu SY. 2022. Taxonomic and distribution revision of Rattus pyctoris in China. Acta Theriologica Sinica 42: 270-285.

[58]

Yu H, Jamieson A, Hulme-Beaman A, Conroy CJ, Knight B, Speller C, Al-Jarah H, Eager H, Trinks A, Adikari G, Baron H, Böhlendorf-Arslan B, Bohingamuwa W, Crowther A, Cucchi T, Esser K, Fleisher J, Gidney L, Gladilina E, Gol'din P, Goodman SM, Hamilton-Dyer S, Helm R, Hillman JC, Kallala N, Kivikero H, Kovács ZE, Kunst GK, Kyselý R, Linderholm A, Maraoui-Telmini B, Marković N, Morales-Muñiz A, Nabais M, O'Connor T, Oueslati T, Quintana Morales EM, Pasda K, Perera J, Perera N, Radbauer S, Ramon J, Rannamäe E, Sanmartí Grego J, Treasure E, Valenzuela-Lamas S, van der Jagt I, Van Neer W, Vigne JD, Walker T, Wynne-Jones S, Zeiler J, Dobney K, Boivin N, Searle JB, Krause-Kyora B, Krause J, Larson G, Orton D. 2022. Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history. Nature Communications 13: 2399.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/