Allopolyploidization events and immense paleogenome reshuffling underlying the diversification of plants and secondary metabolites in Oleaceae

Jiaqi Wang , Yue Ding , Yinfeng Li , Xintong Gao , Xiangming Kong , Feng Long , Yishan Feng , Yan Zhang , Yu Li , Zijian Yu , Tianyu Lei , Li Wang , Xiu-Qing Li , Jinpeng Wang

Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (2) : 208 -228.

PDF
Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (2) : 208 -228. DOI: 10.1111/jse.13116
Research Article

Allopolyploidization events and immense paleogenome reshuffling underlying the diversification of plants and secondary metabolites in Oleaceae

Author information +
History +
PDF

Abstract

Oleaceae, a eudicot family with great species diversity, has attracted much attention from botanists because it contains many plants with important economic, medicinal, and ornamental values. However, the history of polyploidization and ancestral genome reshuffling of Oleaceae remains unclear. Here, we clarified an Oleaceae-common hexaploidization (OCH) event occurring at ~53–61 million years ago (Ma) common in all Oleaceae plants and an Oleaceae-recent tetraploidization (ORT) event occurring at ~18–21 Ma shared by the lineages of Syringa, Olea, Osmanthus, and Fraxinus. We found that high-frequency polyploidization events drove the frequency of gene loss in Oleaceae genomes and extended the size of regions containing adjacent gene loss, thereby promoting the degree of genome fragmentation. We revealed that biased fractionation between the OCH- and ORT-produced subgenomes is likely attributed to the origin of allopolyploidization in the OCH and ORT events. Significantly, through paleochromosome rearrangement comparisons, we proposed a "two-step" genome duplication model for OCH and determined the duplicated orders of OCH tripled genome. We reconstructed 11 protochromosomes of the most recent ancestral Oleaceae karyotype (AOK) and elucidated the trajectories of immense paleochromosome reorganization of Oleaceae species from ancestral eudicot karyotype. Notably, we tracked the diversification history of secondary metabolite synthesis genes in the Oleaceae and explored the effects of paleogenome evolution on specialized metabolite synthesis. Our findings provide new insights into the polyploidization and paleogenomic evolution of Oleaceae and have important scientific significance for understanding the genetic basis of species and secondary metabolic diversity in Oleaceae.

Keywords

allopolyploidization / oleaceae / oleuropein biosynthesis / paleogenome and reshuffling / terpene and phenylpropanoid/benzenoid biosynthesis

Cite this article

Download citation ▾
Jiaqi Wang, Yue Ding, Yinfeng Li, Xintong Gao, Xiangming Kong, Feng Long, Yishan Feng, Yan Zhang, Yu Li, Zijian Yu, Tianyu Lei, Li Wang, Xiu-Qing Li, Jinpeng Wang. Allopolyploidization events and immense paleogenome reshuffling underlying the diversification of plants and secondary metabolites in Oleaceae. Journal of Systematics and Evolution, 2025, 63(2): 208-228 DOI:10.1111/jse.13116

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alagna F, Geu-Flores F, Kries H, Panara F, Baldoni L, O'Connor SE, Osbourn A. 2016. Identification and characterization of the iridoid synthase involved in oleuropein biosynthesis in olive (Olea europaea) fruits. Journal of Biological Chemistry 291: 5542-5554.

[2]

Amborella Genome Project. 2013. The amborella genome and the evolution of flowering plants. Science 342: 1241089.

[3]

Baresel JP, Nichols P, Charrois A, Schmidhalter U. 2018. Adaptation of ecotypes and cultivars of subterranean clover (Trifolium subterraneum l.) to German environmental conditions and its suitability as living mulch. Genetic Resources and Crop Evolution 65: 2057-2068.

[4]

Bennett MD, Leitch IJ. 2005. Nuclear DNA amounts in angiosperms: Progress, problems and prospects. Annals of Botany 95: 45-90.

[5]

Bera P, Mukherjee C, Mitra A. 2017. Enzymatic production and emission of floral scent volatiles in Jasminum sambac. Plant Science 256: 25-38.

[6]

Bertioli DJ, Moretzsohn MC, Madsen LH, Sandal N, Leal-Bertioli SC, Guimaraes PM, Hougaard BK, Fredslund J, Schauser L, Nielsen AM, Sato S, Tabata S, Cannon SB, Stougaard J. 2009. An analysis of synteny of arachis with lotus and medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics 10: 45.

[7]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 30: 2114-2120.

[8]

Cai X, Chang L, Zhang T, Chen H, Zhang L, Lin R, Liang J, Wu J, Freeling M, Wang X. 2021. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biology 22: 166.

[9]

Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VHD, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345: 950-953.

[10]

Chanderbali AS, Jin L, Xu Q, Zhang Y, Zhang J, Jian S, Carroll E, Sankoff D, Albert VA, Howarth DG, Soltis DE, Soltis PS. 2022. Buxus and tetracentron genomes help resolve eudicot genome history. Nature Communications 13: 643.

[11]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. 2020. Tbtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13: 1194-1202.

[12]

Chen G, Mostafa S, Lu Z, Du R, Cui J, Wang Y, Liao Q, Lu J, Mao X, Chang B, Gan Q, Wang L, Jia Z, Yang X, Zhu Y, Yan J, Jin B. 2023. The jasmine (Jasminum sambac) genome provides insight into the biosynthesis of flower fragrances and jasmonates. Genomics, Proteomics & Bioinformatics 21: 127-149.

[13]

Cheng F, Wu J, Cai X, Liang J, Freeling M, Wang X. 2018. Gene retention, fractionation and subgenome differences in polyploid plants. Nature Plants 4: 258-268.

[14]

Cheng F, Wu J, Wang X. 2014. Genome triplication drove the diversification of Brassica plants. Horticulture Research 1: 14024.

[15]

Cichosz SL, Jensen MH, Larsen TK, Hejlesen O. 2020. A Matlab tool for organizing and analyzing NHANES data. Studies in Health Technology and Informatics 270: 1179-1180.

[16]

Clark JW, Donoghue PCJ. 2018. Whole-genome duplication and plant macroevolution. Trends in Plant Science 23: 933-945.

[17]

Dupin J, Raimondeau P, Hong-Wa C, Manzi S, Gaudeul M, Besnard G. 2020. Resolving the phylogeny of the olive family (Oleaceae): Confronting information from organellar and nuclear genomes. Genes 11: 1508.

[18]

Fleck SJ, Tomlin C, da Silva Coelho FA, Richter M, Danielson ES, Backenstose N, Krabbenhoft T, Lindqvist C, Albert VA. 2024. High quality genomes produced from single minion flow cells clarify polyploid and demographic histories of critically endangered Fraxinus (ash) species. Communications Biology 7: 54.

[19]

Freeling M, Scanlon MJ, Fowler JE. 2015. Fractionation and subfunctionalization following genome duplications: Mechanisms that drive gene content and their consequences. Current Opinion in Genetics & Development 35: 110-118.

[20]

Garsmeur O, Schnable JC, Almeida A, Jourda C, D'Hont A, Freeling M. 2014. Two evolutionarily distinct classes of paleopolyploidy. Molecular Biology and Evolution 31: 448-454.

[21]

Guo L, Winzer T, Yang X, Li Y, Ning Z, He Z, Teodor R, Lu Y, Bowser TA, Graham IA, Ye K. 2018. The opium poppy genome and morphinan production. Science 362: 343-347.

[22]

Guo X, Wang F, Fang D, Lin Q, Sahu SK, Luo L, Li J, Chen Y, Dong S, Chen S, Liu Y, Luo S, Guo Y, Liu H. 2023. The genome of Acorus deciphers insights into early monocot evolution. Nature Communications 14: 3662.

[23]

Hu H, Sun P, Yang Y, Ma J, Liu J. 2023. Genome-scale angiosperm phylogenies based on nuclear, plastome, and mitochondrial datasets. Journal of Integrative Plant Biology 65: 1479-1489.

[24]

Huff M, Seaman J, Wu D, Zhebentyayeva T, Kelly LJ, Faridi N, Nelson CD, Cooper E, Best T, Steiner K, Koch J, Romero Severson J, Carlson JE, Buggs R, Staton M. 2022. A high-quality reference genome for Fraxinus pennsylvanica for ash species restoration and research. Molecular Ecology Resources 22: 1284-1302.

[25]

Huxley A. 1992. The new RHS dictionary of gardening. London: Macmillan Press.

[26]

Jacob A, Lancaster J, Buhler J, Harris B, Chamberlain RD. 2008. Mercury BLASTP: Accelerating protein sequence alignment. ACM Transactions on Reconfigurable Technology and Systems 1: 1-44.

[27]

Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P, French-Italian Public Consortium for Grapevine Genome Characterization. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major Angiosperm phyla. Nature 449: 463-467.

[28]

Jeyarani JN, Yohannan R, Vijayavalli D, Dwivedi MD, Pandey AK. 2018. Phylogenetic analysis and evolution of morphological characters in the genus Jasminum l. (Oleaceae) in India. Journal of Genetics 97: 1225-1239.

[29]

Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, McNeal J, Rolf M, Ruzicka DR, Wafula E, Wickett NJ, Wu X, Zhang Y, Wang J, Zhang Y, Carpenter EJ, Deyholos MK, Kutchan TM, Chanderbali AS, Soltis PS, Stevenson DW, McCombie R, Pires J, Wong G, Soltis DE, Depamphilis CW. 2012. A genome triplication associated with early diversification of the core eudicots. Genome Biology 13: R3.

[30]

Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97-100.

[31]

Katoh K. 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059-3066.

[32]

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.

[33]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods 12: 357-360.

[34]

Kong X, Zhang Y, Wang Z, Bao S, Feng Y, Wang J, Yu Z, Long F, Xiao Z, Hao Y, Gao X, Li Y, Ding Y, Wang J, Lei T, Xu C, Wang J. 2023. Two-step model of paleohexaploidy, ancestral genome reshuffling and plasticity of heat shock response in Asteraceae. Horticulture Research 10: uhad073.

[35]

Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. 2019. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biology 20: 278.

[36]

Kubitzki K. 2004. The families and genera of vascular plants. Flowering plants. Dicotyledons: Lamiales (except Acanthaceae including Avicenniaceae). Berlin: Springer-Verlag.

[37]

Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, Tank DC, Soltis PS. 2018. Impact of whole-genome duplication events on diversification rates in angiosperms. American Journal of Botany 105: 348-363.

[38]

Lavin M, Herendeen PS, Wojciechowski MF. 2005. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Systematic Biology 54: 575-594.

[39]

Leitch AR, Leitch IJ. 2008. Genomic plasticity and the diversity of polyploid plants. Science 320: 481-483.

[40]

Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S. 2014. Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics 46: 567-572.

[41]

Lyons E, Pedersen B, Kane J, Freeling M. 2008. The value of nonmodel genomes and an example using synmap within coge to dissect the hexaploidy that predates the rosids. Tropical Plant Biology 1: 181-190.

[42]

Marchetti C, Clericuzio M, Borghesi B, Cornara L, Ribulla S, Gosetti F, Marengo E, Burlando B. 2015. Oleuropein-enriched olive leaf extract affects calcium dynamics and impairs viability of malignant mesothelioma cells. Evidence-Based Complementary and Alternative Medicine 2015: 1-9.

[43]

McCamant T, Black RA. 2000. Cold hardiness in coastal, montane, and inland populations of Populus trichocarpa. Canadian Journal of Forest Research 30: 91-99.

[44]

Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D. 2014. The seco-iridoid pathway from Catharanthus roseus. Nature Communications 5: 3606.

[45]

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A. 2021. Pfam: The protein families database in 2021. Nucleic Acids Research 49: D412-D419.

[46]

Mougiou N, Trikka F, Trantas E, Ververidis F, Makris A, Argiriou A, Vlachonasios KE. 2018. Expression of hydroxytyrosol and oleuropein biosynthetic genes are correlated with metabolite accumulation during fruit development in olive, Olea europaea, cv. Koroneiki. Plant Physiology and Biochemistry 128: 41-49.

[47]

Murat F, Armero A, Pont C, Klopp C, Salse J. 2017. Reconstructing the genome of the most recent common ancestor of flowering plants. Nature Genetics 49: 490-496.

[48]

Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3: 418-426.

[49]

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274.

[50]

Omar SH. 2010. Oleuropein in olive and its pharmacological effects. Scientia Pharmaceutica 78: 133-154.

[51]

Paterson AH, Bowers JE, Chapman BA. 2004. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proceedings of the National Academy of Sciences 101: 9903-9908.

[52]

Polturak G, Osbourn A. 2021. The emerging role of biosynthetic gene clusters in plant defense and plant interactions. PLOS Pathogens 17: e1009698.

[53]

Pont C, Wagner S, Kremer A, Orlando L, Plomion C, Salse J. 2019. Paleogenomics: Reconstruction of plant evolutionary trajectories from modern and ancient DNA. Genome Biology 20: 29.

[54]

Qi X, Li S, Xu Y. 2010. Sorting genomes by reciprocal translocations, insertions, and deletions. IEEE/ACM Transactions on Computational Biology and Bioinformatics 7: 365-374.

[55]

Qi X, Wang H, Chen S, Feng J, Chen H, Qin Z, Blilou I, Deng Y. 2022. The genome of single-petal jasmine (Jasminum sambac) provides insights into heat stress tolerance and aroma compound biosynthesis. Frontiers in Plant Science 13: 1045194.

[56]

Qin L, Hu Y, Wang J, Wang X, Zhao R, Shan H, Li K, Xu P, Wu H, Yan X, Liu L, Yi X, Wanke S, Bowers JE, Leebens-Mack JH, dePamphilis CW, Soltis PS, Soltis DE, Kong H, Jiao Y. 2021. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. Nature Plants 7: 1239-1253.

[57]

Qiu T, Liu Z, Liu B. 2020. The effects of hybridization and genome doubling in plant evolution via allopolyploidy. Molecular Biology Reports 47: 5549-5558.

[58]

Rao G, Zhang J, Liu X, Lin C, Xin H, Xue L, Wang C. 2021. De novo assembly of a new Olea europaea genome accession using nanopore sequencing. Horticulture Research 8: 64.

[59]

Renny-Byfield S, Rodgers-Melnick E, Ross-Ibarra J. 2017. Gene fractionation and function in the ancient subgenomes of maize. Molecular Biology and Evolution 34: 1825-1832.

[60]

Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I. 2015. The chromosome counts database (ccdb)—A community resource of plant chromosome numbers. New Phytologist 206: 19-26.

[61]

Rodriguez-Lopez CE, Hong B, Paetz C, Nakamura Y, Koudounas K, Passeri V, Baldoni L, Alagna F, Calderini O, O'Connor SE. 2021. Two bi-functional cytochrome p450 cyp72 enzymes from olive (Olea europaea) catalyze the oxidative c-c bond cleavage in the biosynthesis of secoxy-iridoids-flavor and quality determinants in olive oil. New Phytologist 229: 2288-2301.

[62]

Ruban DA. 2020. Paleozoic-mesozoic eustatic changes and mass extinctions: New insights from event interpretation. Life 10: 281.

[63]

Salim V, Yu F, Altarejos J, De Luca V. 2013. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. The Plant Journal 76: 754-765.

[64]

Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463: 178-183.

[65]

Schnable JC, Springer NM, Freeling M. 2011. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proceedings of the National Academy of Sciences 108: 4069-4074.

[66]

Schubert I, Lysak MA. 2011. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends in Genetics 27: 207-216.

[67]

Servili M, Sordini B, Esposto S, Taticchi A, Urbani S, Sebastiani L. 2016. Metabolomics of olive fruit: A focus on the secondary metabolites. In: Rugini E, Baldoni L, Muleo R, Sebastiani L eds. The olive tree genome. Cham: Springer International Publishing. 123-139.

[68]

Shi T, Huneau C, Zhang Y, Li Y, Chen J, Salse J, Wang Q. 2022. The slow-evolving Acorus tatarinowii genome sheds light on ancestral monocot evolution. Nature Plants 8: 764-777.

[69]

Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Depamphilis CW, Wall PK, Soltis PS. 2009. Polyploidy and angiosperm diversification. American Journal of Botany 96: 336-348.

[70]

Soltis PS, Marchant DB, Van de Peer Y, Soltis DE. 2015. Polyploidy and genome evolution in plants. Current Opinion in Genetics & Development 35: 119-125.

[71]

Soltis PS, Soltis DE. 2016. Ancient WGD events as drivers of key innovations in angiosperms. Current Opinion in Plant Biology 30: 159-165.

[72]

Steige KA, Slotte T. 2016. Genomic legacies of the progenitors and the evolutionary consequences of allopolyploidy. Current Opinion in Plant Biology 30: 88-93.

[73]

Subramanian B, Gao S, Lercher MJ, Hu S, Chen WH. 2019. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Research 47: W270-W275.

[74]

Tang H, Woodhouse MR, Cheng F, Schnable JC, Pedersen BS, Conant G, Wang X, Freeling M, Pires JC. 2012. Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics 190: 1563-1574.

[75]

Tayalé A, Parisod C. 2013. Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenetic and Genome Research 140: 79-96.

[76]

The Angiosperm Phylogeny Group. 2016. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG iv. Botanical Journal of the Linnean Society 181: 1-20.

[77]

Unver T, Wu Z, Sterck L, Turktas M, Lohaus R, Li Z, Yang M, He L, Deng T, Escalante FJ, Llorens C, Roig FJ, Parmaksiz I, Dundar E, Xie F, Zhang B, Ipek A, Uranbey S, Erayman M, Ilhan E, Badad O, Ghazal H, Lightfoot DA, Kasarla P, Colantonio V, Tombuloglu H, Hernandez P, Mete N, Cetin O, Van Montagu M, Yang H, Gao Q, Dorado G, Van de Peer Y. 2017. Genome of wild olive and the evolution of oil biosynthesis. Proceedings of the National Academy of Sciences 114: E9413-E9422.

[78]

Van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews. Genetics 18: 411-424.

[79]

Vekemans D, Proost S, Vanneste K, Coenen H, Viaene T, Ruelens P, Maere S, Van de Peer Y, Geuten K. 2012. Gamma paleohexaploidy in the stem lineage of core eudicots: Significance for mads-box gene and species diversification. Molecular Biology and Evolution 29: 3793-3806.

[80]

Wang J, Qin J, Sun P, Ma X, Yu J, Li Y, Sun S, Lei T, Meng F, Wei C, Li X, Guo H, Liu X, Xia R, Wang L, Ge W, Song X, Zhang L, Guo D, Wang J, Bao S, Jiang S, Feng Y, Li X, Paterson AH, Wang X. 2019b. Polyploidy index and its implications for the evolution of polyploids. Frontiers in Genetics 10: 807.

[81]

Wang J, Yang Z, Lei T, Zhang Y, Xiao Q, Yu Z, Zhang J, Sun S, Xu Q, Shen S, Yan Z, Fang M, Ding Y, Liu Z, Zhu Q, Ren K, Pan Y, Liu H, Wang J. 2023. A likely autotetraploidization event shaped the chinese mahogany (Toona sinensis) genome. Horticultural Plant Journal 9: 306-320.

[82]

Wang J, Yu J, Li Y, Wei C, Guo H, Liu Y, Zhang J, Li X, Wang X. 2020. Sequential paleotetraploidization shaped the carrot genome. BMC Plant Biology 20: 52.

[83]

Wang J, Yuan J, Yu J, Meng F, Sun P, Li Y, Yang N, Wang Z, Pan Y, Ge W, Wang L, Li J, Liu C, Zhao Y, Luo S, Ge D, Cui X, Feng G, Wang Z, Ji L, Qin J, Li X, Wang X, Xi Z. 2019a. Recursive paleohexaploidization shaped the durian genome. Plant Physiology 179: 209-219.

[84]

Wang J, Yuan M, Feng Y, Zhang Y, Bao S, Hao Y, Ding Y, Gao X, Yu Z, Xu Q, Zhao J, Zhu Q, Wang P, Wu C, Wang J, Li Y, Xu C, Wang J. 2022b. A common whole-genome paleotetraploidization in cucurbitales. Plant Physiology 190: 2430-2448.

[85]

Wang J, Sun P, Li Y, Liu Y, Yang N, Yu J, Ma X, Sun S, Xia R, Liu X, Ge D, Luo S, Liu Y, Kong Y, Cui X, Lei T, Wang L, Wang Z, Ge W, Zhang L, Song X, Yuan M, Guo D, Jin D, Chen W, Pan Y, Liu T, Yang G, Xiao Y, Sun J, Zhang C, Li Z, Xu H, Duan X, Shen S, Zhang Z, Huang S, Wang X. 2018a. An overlooked paleotetraploidization in cucurbitaceae. Molecular Biology and Evolution 35: 16-26.

[86]

Wang J, Sun P, Li Y, Liu Y, Yu J, Ma X, Sun S, Yang N, Xia R, Lei T, Liu X, Jiao B, Xing Y, Ge W, Wang L, Wang Z, Song X, Yuan M, Guo D, Zhang L, Zhang J, Jin D, Chen W, Pan Y, Liu T, Jin L, Sun J, Yu J, Cheng R, Duan X, Shen S, Qin J, Zhang M, Paterson AH, Wang X. 2017. Hierarchically aligning 10 legume genomes establishes a family-level genomics platform. Plant Physiology 174: 284-300.

[87]

Wang JP, Yu JG, Li J, Sun PC, Wang L, Yuan JQ, Meng FB, Sun SR, Li YX, Lei TY, Pan YX, Ge WN, Wang ZY, Zhang L, Song XM, Liu C, Duan XQ, Shen SQ, Xie YQ, Hou Y, Zhang J, Wang JY, Wang X. 2018b. Two likely auto-tetraploidization events shaped kiwifruit genome and contributed to establishment of the actinidiaceae family. iScience 7: 230-240.

[88]

Wang M, Liu C, Xing T, Wang Y, Xia G. 2015. Asymmetric somatic hybridization induces point mutations and indels in wheat. BMC Genomics 16: 807.

[89]

Wang X, Shi X, Li Z, Zhu Q, Kong L, Tang W, Ge S, Luo J. 2006. Statistical inference of chromosomal homology based on gene colinearity and applications to arabidopsis and rice. BMC Bioinformatics 7: 447.

[90]

Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z, Brassica rapa Genome Sequencing Project Consortium. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics 43: 1035-1039.

[91]

Wang Y, Lu L, Li J, Li H, You Y, Zang S, Zhang Y, Ye J, Lv Z, Zhang Z, Qin Y, Zhang H, Xia F, Li H, Zhang H, Fan P, Shi L, Liang Z, Cui H. 2022a. A chromosome-level genome of Syringa oblata provides new insights into chromosome formation in oleaceae and evolutionary history of lilacs. Plant Journal 111: 836-848.

[92]

Wang Y, Mostafa S, Zeng W, Jin B. 2021. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. International Journal of Molecular Sciences 22: 8568.

[93]

Wolfe KH. 2001. Yesterday′s polyploids and the mystery of diploidization. Nature Reviews Genetics 2: 333-341.

[94]

Wu B, Li Y, Zhao W, Meng Z, Ji W, Wang C. 2021. Transcriptomic and lipidomic analysis of lipids in Forsythia suspensa. Frontiers in Genetics 12: 758326.

[95]

Xiang KL, Liu RX, Zhao L, Xie ZP, Zhang SM, Dai SJ. 2020. Labdane diterpenoids from Forsythia suspensa with anti-inflammatory and anti-viral activities. Phytochemistry 173: 112298.

[96]

Xu M, Gao Q, Jiang M, Wang W, Hu J, Chang X, Liu D, Liang Y, Jiang Y, Chen F, Li C, Huang H, Chen F, Li F, Trigiano RN, Wang J, Jiao C, Zhou X, Zhang L. 2023. A novel genome sequence of Jasminum sambac helps uncover the molecular mechanism underlying the accumulation of jasmonates. Journal of Experimental Botany 74: 1275-1290.

[97]

Xu S, Ding Y, Sun J, Zhang Z, Wu Z, Yang T, Shen F, Xue G. 2022. A high-quality genome assembly of Jasminum sambac provides insight into floral trait formation and oleaceae genome evolution. Molecular Ecology Resources 22: 724-739.

[98]

Xu W, Zhang Q, Yuan W, Xu F, Muhammad Aslam M, Miao R, Li Y, Wang Q, Li X, Zhang X, Zhang K, Xia T, Cheng F. 2020. The genome evolution and low-phosphorus adaptation in white lupin. Nature Communications 11: 1069.

[99]

Zhan C, Shen S, Yang C, Liu Z, Fernie AR, Graham IA, Luo J. 2022. Plant metabolic gene clusters in the multi-omics era. Trends in Plant Science 27: 981-1001.

[100]

Zhang Y, Zhang L, Xiao Q, Wu C, Zhang J, Xu Q, Yu Z, Bao S, Wang J, Li Y, Wang L, Wang J. 2022. Two independent allohexaploidizations and genomic fractionation in solanales. Frontiers in Plant Science 13: 1001402.

[101]

Zhuang W, Chen H, Yang M, Wang J, Pandey MK, Zhang C, Chang WC, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow CN, Wang J, Deng Y, Wang D, Khan AW, Yang Q, Cai T, Bajaj P, Wu K, Guo B, Zhang X, Li J, Liang F, Hu J, Liao B, Liu S, Chitikineni A, Yan H, Zheng Y, Shan S, Liu Q, Xie D, Wang Z, Khan SA, Ali N, Zhao C, Li X, Luo Z, Zhang S, Zhuang R, Peng Z, Wang S, Mamadou G, Zhuang Y, Zhao Z, Yu W, Xiong F, Quan W, Yuan M, Li Y, Zou H, Xia H, Zha L, Fan J, Yu J, Xie W, Yuan J, Chen K, Zhao S, Chu W, Chen Y, Sun P, Meng F, Zhuo T, Zhao Y, Li C, He G, Zhao Y, Wang C, Kavikishor PB, Pan RL, Paterson AH, Wang X, Ming R, Varshney RK. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics 51: 865-876.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/