Untangling the origin and diversification of the Carthamus–Carduncellus complex (Cardueae, Compositae) in the Mediterranean basin

Roser Vilatersana , Juan Antonio Calleja , Sonia Herrando-Moraira , Núria Garcia-Jacas , Alfonso Susanna

Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (5) : 1009 -1024.

PDF
Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (5) : 1009 -1024. DOI: 10.1111/jse.13057
Research Article

Untangling the origin and diversification of the Carthamus–Carduncellus complex (Cardueae, Compositae) in the Mediterranean basin

Author information +
History +
PDF

Abstract

Understanding the richness and diversification processes in the Mediterranean basin requires both knowledge of the current environmental complexity and paleogeographic and paleoclimate events and information from studies that introduce the temporal dimension. The Carthamus–Carduncellus complex (Cardueae, Compositae) constitutes a good case study to investigate the biogeographic history of this region because it evolved throughout the basin. We performed molecular dating, ancestral area estimation, and diversification analyses based on previous phylogenetic studies of a nearly complete taxon sampling of the complex. The main aims were to determine the role of tectonic and climatic events in the disjunction of the complex and the expansion route of the two main lineages,Carduncellus s.l. and Carthamus. Our results suggest that the main lineages in the complex originated during the Miocene. Later, all main paleogeographic and paleoclimatic events during the Neogene and Pleistocene in the Mediterranean basin had an important imprint on the evolutionary history of the complex. The Messinian Salinity Crisis facilitated the dispersion of the genus Carduncellus from North Africa to the Iberian Peninsula and the split of the genera Phonus and Femeniasia from the Carduncellus lineage. The onset of the Mediterranean climate in the Pliocene together with some orogenic processes could be the main causes of the diversification of the genus Carduncellus. In contrast, Pleistocene glaciations played a key role in the species diversification of Carthamus. In addition, we emphasize the problems derived from secondary dating and the existing differences between two previous dating analyses of the tribe Cardueae.

Keywords

biogeographic history / diversification analyses / Mediterranean climate / Messinian salinity crisis / molecular dating / Pleistocene glaciations

Cite this article

Download citation ▾
Roser Vilatersana, Juan Antonio Calleja, Sonia Herrando-Moraira, Núria Garcia-Jacas, Alfonso Susanna. Untangling the origin and diversification of the Carthamus–Carduncellus complex (Cardueae, Compositae) in the Mediterranean basin. Journal of Systematics and Evolution, 2024, 62(5): 1009-1024 DOI:10.1111/jse.13057

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AckerfieldJ,SusannaA, FunkV,Kelch D,ParkDS,ThornhillAH,YildizB, ArabaciT,Dirmenci T. 2020. A prickly puzzle: Generic delimitations in the Carduus-Cirsium group (Compositae: Cardueae: Carduinae). Taxon 69:715–738.

[2]

AnastasakisGC,Dermitzakis DM. 1990. Post-Middle-Miocene palaeogeographic evolution of the Central Aegean Sea and detailed Quaternary reconstruction of the region. Its possible influence on the distribution of the Quaternary mammals of the Cyclades Islands. Neues Jahrbuch für Geologie und Paläontologie 1:1–16.

[3]

AnderbergAA,BaldwinBG, BayerRG,Breitwieser J,JeffreyC,DillonMO,Eldenäs P,FunkV,Garcia-JacasN,HindDJN, KarisPO,Lack HW,NesomG,NordenstamB,Oberprieler C,PaneroJL,PuttockC,Robinson H,StuessyTF,SusannaA,UrtubeyE, VogtR,Ward J,WatsonLE. 2007. Compositae. In: Kadereit JW,Jeffrey C eds. The families and genera of vascular plants. Volume VIII. Flowering plants. Eudicots. Asterales. Berlin: Springer. 61–588.

[4]

AntonelliA,Sanmartín I. 2011. Mass extinction, gradual cooling, or rapid radiation? Reconstructing the spatiotemporal evolution of the ancient angiosperm genus Hedyosmum (Chloranthaceae) using empirical and simulated approaches. Systematic Biology 60:596–615.

[5]

ArgerJ,Mitchell J,WestawayR. 2000. Neogene and Quaternary volcanism of southeastern Turkey. In: Bozkurt E,Winchester JA,Piper JDA eds. Tectonics and magmatism of Turkey and the surrounding area. London: Geological Society of London, Special Publication. 173:459–487.

[6]

BaeleG,LemeyP. 2013. Bayesian evolutionary model testing in the phylogenomics era, matching model complexity with computational efficiency. Bioinformatics 29:1970–1979.

[7]

BaeleG,LemeyP, BedfordT,Rambaut A,SuchardMA,AlekseyenkoAV. 2012. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Molecular Biology and Evolution 29:2157–2167.

[8]

Barba-MontoyaJ,TaoQ, KumarS. 2021. Assessing rapid relaxed-clock methods for phylogenomic dating. Genome Biology and Evolution 13: evab251.

[9]

BarresL,Sanmartín I,AndersonCL,SusannaA,BuerkiS, Galbany-CasalsM,VilatersanaR. 2013. Reconstructing the evolution and biogeographic history of tribe Cardueae (Compositae). American Journal of Botany 100:867–882.

[10]

Ben-Menni SchulerS,López-Pujol J,BlancaG,VilatersanaR,Garcia-Jacas N,Suárez-SantiagoVN. 2019. Influence of the Quaternary glacial cycles and the mountains on the reticulations in the subsection Willkommia of the genus Centaurea. Frontiers in Plant Science 10:303.

[11]

BiltekinD. 2010. Vegetation and climate of North Anatolian and North Aegean region since 7 Ma according to pollen analysis. Ph.D. Thesis. Lyon: Université Claude Bernard-Lyon 1–Université Technique d ’ Istanbul.

[12]

BittkauC,ComesHP. 2009. Molecular inference of a Late Pleistocene diversification shift in Nigella s. lat. (Ranunculaceae) resulting from increased speciation in the Aegean archipelago. Journal of Biogeography 36:1346–1360.

[13]

BlondelJ,AronsonJ, BodiouJ-Y,Boeuf G. 2010. The Mediterranean region: Biological diversity in space and time. 2nd ed. Oxford, New York: Oxford University Press.

[14]

BocquetG,WidlerB, KieferH. 1978. The Messinian model: A new outlook for the floristics and systematics of the Mediterranean area. Candollea 33:269–287.

[15]

Booth-ReaG,RaneroCR, GrevemeyerI. 2018. The Alboran volcanic-arc modulated the Messinian faunal exchange and salinity crisis. Scientific Reports 8:13015.

[16]

BozkurtM,CallejaJA, UysalT,Garcia-Jacas N,ErtuğrulE,SusannaA. 2022. Biogeography of Rhaponticoides, an Irano-Turanian element in the Mediterranean flora. Scientific Reports 12:22019.

[17]

BräuchlerC,Meimberg H,HeublG. 2004. Molecular phylogeny of the genera Digitalis L. and Isoplexis (Lindley) Loudon (Veronicaceae) based on ITS-and trnL-F sequences. Plant Systematics and Evolution 248:111–128.

[18]

CallejaJA,Garcia-Jacas N,RoquetC,SusannaA. 2016. Beyond the Rand Flora pattern: phylogeny and biogeographical history of Volutaria (Compositae). Taxon 65:315–332.

[19]

CarruthersT,Scotland RW. 2021. Uncertainty in divergence time estimation. Systematic Biology 70:855–861.

[20]

ChristinPA,SpriggsE, OsborneCP,Strömberg CA,SalaminN,EdwardsEJ. 2014. Molecular dating, evolutionary rates, and the age of the grasses. Systematic Biology 63:153–165.

[21]

ChuecaLJ,MadeiraMJ, Gómez-MolinerBJ. 2015. Biogeography of the land snail genus Allognathus (Helicidae): middle Miocene colonization of the Balearic Islands. Journal of Biogeography 42:1845–1857.

[22]

DavisCC,XiZ, MathewsS. 2014. Plastid phylogenomics and green plant phylogeny: Almost full circle but not quite there. BMC Biology 12:11.

[23]

DjamaliM,BaumelA, BrewerS,Jackson ST,KadereitJW,López-VinyallongaS,MehreganI,Shabanian E,SimakovaA. 2012. Ecological implications of Cousinia Cass. (Asteraceae) persistence through the last two glacial–interglacial cycles in the continental Middle East for the Irano-Turanian flora. Review of Palaeobotany and Palynology 172:10–20.

[24]

DrummondAJ,HoSYW, PhillipsMJ,Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88.

[25]

DrummondAJ,RambautA. 2007. BEAST, Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7:214.

[26]

EbersbachJ,Schnitzler J,FavreA,Muellner-RiehlAN. 2017. Evolutionary radiations in the species-rich mountain genus Saxifraga L. BMC Evolutionary Biology 17:119.

[27]

EhlersJ,GibbardPL, HuguesPD. 2018. Quaternary glaciations and chronology. In: Menzies J,van der Meer JJM eds. Past glacial environments. 2nd ed. Amsterdam: Elsevier. 77–101.

[28]

EronenJT,Ataabadi MM,MicheelsA,KarmeA,BernorRL, ForteliusM. 2009. Distribution history and climatic controls of the Late Miocene Pikermian chronofauna. Proceedings of the National Academy of Sciences of the United States of America 106:11867–11871.

[29]

EvansMEK,HearnDJ, HahnWJ,Spangle MJ,VenableLD. 2005. Climate and life-history evolution in evening primroses (Oenothera, Onagraceae): A phylogenetic comparative analysis. Evolution 59:1914–1927.

[30]

FačkovcováZ,SlovákM,Vďačný P,Melichárková A,Zozomová-Lihová J,GuttováA. 2020. Spatio-temporal formation of the genetic diversity in the Mediterranean dwelling lichen during the Neogene and Quaternary epochs. Molecular Phylogenetics and Evolution 144:106704.

[31]

FauquetteS,SucJP, BertiniA,Popescu SM,WarnyS,TaoufiqNB,Perez Villa MJ,ChikhiH,FeddiN,SuballyD, ClauzonG,Ferrier J. 2006. How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology 238:281–301.

[32]

Fernández-MazuecosM,Jiménez-MejíasP,Rotllan-PuigX,VargasP. 2014. Narrow endemics to Mediterranean islands: Moderate genetic diversity but narrow climatic niche of the ancient, critically endangered Naufraga (Apiaceae). Perspectives in Plant Ecology, Evolution and Systematics 16:190–202.

[33]

Fernández-MazuecosM,VargasP. 2015. Quaternary radiation of bifid toadflaxes (Linaria sect. Versicolores) in the Iberian Peninsula: Low taxonomic signal but high geographic structure of plastid DNA lineages. Plant Systematics and Evolution 301:1411–1423.

[34]

Fiz-PalaciosO,Valcárcel V. 2013. From Messinian crisis to Mediterranean climate: a temporal gap of diversification recovered from multiple plant phylogenies. Perspectives in Plant Ecology, Evolution and Systematics 15:130–137.

[35]

FontM,Garcia-Jacas N,VilatersanaR,RoquetC,SusannaA. 2009. Evolution and biogeography of Centaurea section Acrocentron inferred from nuclear and plastid DNA sequence analyses. Annals of Botany 103:985–997.

[36]

ForteliusM,EronenJ, LiuL,Pushkina D,TesakovA,VislobokovaI,ZhangZ. 2006. Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. Palaeogeography, Palaeoclimatology, Palaeoecology 238:219–227.

[37]

Frizon de LamotteD,Leturmy P,MissenardY,KhomsiS,RuizG, SaddiqiO,Guillocheau F,MichardA. 2009. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview. Tectonophysics 475:9–28.

[38]

FunkVA,SusannaA, StuessyTF,Robinson H. 2009. Classification of Compositae. In: Funk VA,Susanna A,Stuessy TF,Bayer RJ eds. Systematics, evolution, and biogeography of Compositae. Vienna: International Association for Plant Taxonomy. 171–189.

[39]

Garcia-JacasN,SoltisPS, FontM,Soltis DE,VilatersanaR,SusannaA. 2009. The polyploid series of Centaurea toletana: Glacial migrations and introgression revealed by nrDNA and cpDNA sequence analyzes. Molecular Phylogenetics and Evolution 52:377–394.

[40]

Garcia-JacasN,SusannaA, GarnatjeT,Vilatersana R. 2001. Generic delimitation and phylogeny of the subtribe Centaureinae (Asteraceae), a combined nuclear and chloroplast DNA analysis. Annals of Botany 87:503–515.

[41]

García-VázquezD,BiltonDT,AlonsoR, BenettiCJ,Garrido J,ValladaresLF,RiberaI. 2016. Reconstructing ancient Mediterranean crossroads in Deronectes diving beetles. Journal of Biogeography 43:1533–1545.

[42]

GatJR,Magaritz M. 1980. Climatic variations in the Eastern Mediterranean Sea area. Naturwissenschaften 67:80–87.

[43]

GaudeulM,Véla E,RouhanG. 2016. Eastward colonization of the Mediterranean Basin by two geographically structured clades: The case of Odontites Ludw. (Orobanchaceae). Molecular Phylogenetics and Evolution 96:140–149.

[44]

GoudieAS. 2005. The drainage of Africa since the Cretaceous. Geomorphology 67:437–456.

[45]

GraurD,MartinW. 2004. Reading the entrails of chickens: Molecular timescales of evolution and the illusion of precision. Trends in Genetics 20:80–86.

[46]

GuttermanY. 2002. Survival strategies of annual desert plants. Berlin: Springer.

[47]

HellerJ. 2007. A historic biogeography of the aquatic fauna of the Levant. Biological Journal of the Linnean Society 92:625–639.

[48]

Herrando-MorairaS,Massó S,ZaniD,López-PujolJ,Vilatersana R. 2019a. The impact of Pleistocene sea-level oscillations on plant genetic diversity: The case of the western Mediterranean endemic Carduncellus dianius (Asteraceae). Botanical Journal of the Linnean Society 191:399–420.

[49]

Herrando-MorairaS,The Cardueae Radiations Group (Calleja JA,Galbany-CasalsM,Garcia-JacasN,LiuJ-Q, López-AlvaradoJ,López-PujolJ,Mandel JR,MassóS,Montes-MorenoN,RoquetC, SáezLl,SennikovA,SusannaA, VilatersanaR). 2019b. Nuclear and plastid DNA phylogeny of the tribe Cardueae (Compositae) with Hyb-Seq data: A new subtribal and a temporal framework for the origin of the tribe and the subtribes. Molecular Phylogenetics and Evolution 137:313–332.

[50]

Herrando-MorairaS,Roquet C,The Cardueae Radiations Group ( CallejaJA,Chen YS,FujikawaK,Galbany-CasalsM,Garcia-Jacas N,LiuJ-Q,López-AlvaradoJ,López-Pujol J,MandelJR,MehreganI,Sáez Ll,SennikovAN,SusannaA,Vilatersana R,XuLS). 2023. Impact of the climatic changes in the Pliocene-Pleistocene transition on Irano-Turanian species. The radiation of genus Jurinea (Compositae). Molecular Phylogenetics and Evolution 189:107928.

[51]

HilpoldA,Vilatersana R,SusannaA,MeseguerAS,Boršić I,ConstantinidisT,FilighedduR,Romaschenko K,Suárez-SantiagoVN, TugayO,Uysal T,PfeilBE,Garcia-JacasN. 2014. Phylogeny of the Centaurea group (Centaurea, Compositae)–geography is a better predictor than morphology. Molecular Phylogenetics and Evolution 77:195–215.

[52]

HsüKJ,Montadert L,BernoulliD,CitaMB,Erickson A,GarrisonRE,KiddRB,Mèlierés F,MüllerC,WrightR. 1977. History of the Mediterranean salinity crisis. Nature 267:399–403.

[53]

HughesCE,Atchison GW. 2015. The ubiquity of alpine plant radiations: From the Andes to the Hengduan Mountains. New Phytologist 207:275–282.

[54]

HusemannM,SchmittT, ZachosFE,Ulrich W,HabelJC. 2014. Palaearctic biogeography revisited: Evidence for the existence of a North African refugium for Western Palaearctic biota. Journal of Biogeography 41:81–94.

[55]

IvanovD,AshrafAR, UtescherT,Mosbrugger V,SlavomirovaE. 2007. Late Miocene vegetation and climate of the Balkan region, palynology of the Beli Breg Coal Basin sediments. Geologica Carpathica 58:367–381.

[56]

JabbourF,RennerSS. 2011. Consolida and Aconitella are an annual clade of Delphinium (Ranunculaceae) that diversified in the Mediterranean basin and the Irano-Turanian region. Taxon 60:1029–1040.

[57]

JolivetL,AugierR, RobinC,Suc JP,RouchyJM. 2006. Lithospheric-scale geodynamic context of the Messinian salinity crisis. Sedimentary Geology 188:9–33.

[58]

JonesG,Valamoti SM. 2005. Lallemantia, an imported or introduced oil plant in Bronze Age northern Greece. Vegetation History and Archaeobotany 14:571–577.

[59]

JonesKE,Korotkova N,PetersenJ,HenningT,BorschT, KilianN. 2017. Dynamic diversification history with rate upshifts in Holarctic bell-flowers (Campanula and allies). Cladistics 33:637–666.

[60]

KadereitJW,AbbottRJ. 2021. Plant speciation in the Quaternary. Plant Ecology & Diversity 14:105–142.

[61]

KapliP,Lymberakis P,CrochetPA,GeniezP,BritoJC, AlmutairiM,Ahmadzadeh F,SchmitzA,WilmsT,PouyaniNR, PoulakakisN. 2015. Historical biogeography of the lacertid lizard Mesalina in North Africa and the Middle East. Journal of Biogeography 42:267–279.

[62]

KassRE,RafteryAE. 1995. Bayes factors. Journal of the American Statistical Association 90:773–795.

[63]

KellnerA,BrinkGJ, El KhawagaH. 2018. Depositional history of the western Nile Delta, Egypt: Late Rupelian to Pleistocene. AAPG Bulletin 102:1841–1865.

[64]

KlausKV,MatzkeNJ. 2020. Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Systematic Biology 69:61–75.

[65]

KodandaramaiahU,MuraliG. 2018. What affects power to estimate speciation rate shifts. PeerJ 6: e5495.

[66]

KoufosGD,Kostopoulos DS,VlachouTD. 2005. Neogene/Quaternary mammalian migrations in eastern Mediterranean. Belgian Journal of Zoology 135:181–190.

[67]

KrijgsmanW,HilgenFJ, RaffiI,Sierro FJ,WilsonDS. 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–654.

[68]

LauterbachM,Veranso-Libalah MC,SukhorukovAP,KadereitG. 2019. Biogeography of the xerophytic genus Anabasis L. (Chenopodiaceae). Ecology and Evolution 9:3539–3552.

[69]

LinderHP,HardyCR, RutschmannF. 2005. Taxon sampling effects in molecular clock dating: an example from the African Restionaceae. Molecular Phylogenetics and Evolution 35:569–582.

[70]

LledóMD,CrespoMB, FayMF,Chase MW. 2005. Molecular phylogenetics of Limonium and related genera (Plumbaginaceae): Biogeographical and systematic implications. American Journal of Botany 92:1189–1198.

[71]

Lo PrestiRM,Oberprieler C. 2009. Evolutionary history, biogeography and eco-climatological differentiation of the genus Anthemis L. (Compositae, Anthemideae) in the circum-Mediterranean area. Journal of Biogeography 36:1313–1332.

[72]

López GonzálezG. 1998. Carduncellus cuatrecasasii G. López (Compositae-Cardueae) y sus peculiares adaptaciones para dispersar los frutos. Anales del Jardín Botánico de Madrid 56:77–84.

[73]

MagallónSA,Sanderson MJ. 2005. Angiosperm divergence times: The effect of genes, codon positions, and time constraints. Evolution 59:1653–1670.

[74]

ManafzadehS,SalvoG, ContiE. 2014. A tale of migrations from east to west: The Irano-Turanian floristic region as a source of Mediterranean xerophytes. Journal of Biogeography 41:366–379.

[75]

MannionAM. 2012. Quaternary environmental history. In: Vogiatzakis IN ed. Mediterranean mountain environments. Chichester: John Wiley & Sons. 11–34.

[76]

MarinovaE,RiehlS. 2009. Carthamus species in the ancient Near East and south-eastern Europe: archaeobotanical evidence for their distribution and use as a source of oil. Vegetation History and Archaeobotany 18:341–349.

[77]

MartensK,OrtalR. 1999. Diversity and zoogeography of inland-water Ostracoda (Crustacea) in Israel (Levant). Israel Journal of Zoology 45:159–173.

[78]

Martín-BravoS,Valcárcel V,VargasP,LuceñoM. 2010. Geographical speciation related to Pleistocene range shifts in the western Mediterranean mountains (Reseda sect. Glaucoreseda, Resedaceae). Taxon 59:466–482.

[79]

MatzkeNJ. 2013. Probabilistic historical biogeography, new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 5:242–248.

[80]

MatzkeNJ. 2018. BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis with R Scripts. version 1.1.1. San Francisco: GitHub. https://doi.org/10.5281/zenodo.1478250

[81]

MatzkeNJ. 2022. Statistical comparison of DEC and DEC + J is identical to comparison of two ClaSSe submodels, and is therefore valid. Journal of Biogeography 49:1805–1824.

[82]

MetallinouM,Červenka J,CrochetPA,KratochvílL,Wilms T,GeniezP,ShobrakMY,BritoJC, CarranzaS. 2015. Species on the rocks: Systematics and biogeography of the rock-dwelling Ptyodactylus geckos (Squamata: Phyllodactylidae) in North Africa and Arabia. Molecular Phylogenetics and Evolution 85:208–220.

[83]

MeyerALS,WiensJJ. 2018. Estimating diversification rates for higher taxa, BAMM can give problematic estimates of rates and rate shifts. Evolution 72:39–53.

[84]

MiglioreJ,BaumelA, JuinM,Médail F. 2012. From Mediterranean shores to central Saharan mountains: Key phylogeographical insights from the genus Myrtus. Journal of Biogeography 39:942–956.

[85]

MoharrekF,Sanmartín I,Kazempour-OsalooS,Nieto FelinerG. 2019. Morphological innovations and vast extensions of mountain habitats triggered rapid diversification within the species-rich irano-turanian genus Acantholimon (Plumbaginaceae). Frontiers in Genetics 9:698.

[86]

MontazerolghaemS,Susanna A,CallejaJA,MozaffarianV,Rahiminejad MR. 2017. Molecular systematics and phylogeography of the genus Echinops (Compositae, Cardueae-Echinopsinae): Focus on the Iranian centre of diversification. Phytotaxa 297:101–138.

[87]

MooreBR,Höhna S,MayMR,RannalaB,Huelsenbeck JP. 2016. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proceedings of the National Academy of Sciences of the United States of America 13:9569–9574.

[88]

Muñoz-RodríguezP,CarruthersT,WoodJR, WilliamsBR,Weitemier K,KronmillerB,GoodwinZ,Sumadijaya A,AnglinNL,FilerD,HarrisD, RausherMD,Kelly S,ListonA,ScotlandRW. 2019. A taxonomic monograph of Ipomoea integrated across phylogenetic scales. Nature Plants 5:1136–1144.

[89]

NearTJ,MeylanPA, ShafferHB. 2005. Assessing concordance of fossil calibration points in molecular clock studies: An example using turtles. The American Naturalist 165:137–146.

[90]

NeeS,MooersAO, HarveyPH. 1992. Tempo and mode of evolution revealed from molecular phylogenies. Proceedings of the National Academy of Sciences of the United States of America 89:8322–8326.

[91]

Nieto FelinerG. 2014. Patterns and processes in plant phylogeography in the Mediterranean Basin. A review. Perspectives in Plant Ecology, Evolution and Systematics 16:265–278.

[92]

OosterbroekP,ArntzenJW. 1992. Area-cladograms of Circum-Mediterranean taxa in relation to Mediterranean palaeogeography. Journal of Biogeography 19:3–20.

[93]

PaneroJL,CrozierBS. 2016. Macroevolutionary dynamics in the early diversification of Asteraceae. Molecular Phylogenetics and Evolution 99:116–132.

[94]

ParadisE,ClaudeJ, StrimmerK. 2004. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290.

[95]

PerissoratisC,Conispoliatis N. 2003. The impacts of sea-level changes during latest Pleistocene and Holocene times on the morphology of the Ionian and Aegean seas (SE Alpine Europe). Marine Geology 196:145–156.

[96]

PrumRO,BervJS, DornburgA,Field DJ,TownsendJP,LemmonEM,LemmonAR. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573.

[97]

QuézelP. 1985. Definition on the Mediterranean region and the origin of its flora. In: Gómez-Campo C ed. Plant conservation in the Mediterranean area. Dordrecht: Dr W Junk Publishers. 9–24.

[98]

R Development Core Team. 2016. R, a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.r-project.org/

[99]

RaboskyDL. 2014. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9: e89543.

[100]

RaboskyDL. 2019. Phylogenies and diversification rates: Variance cannot be ignored. Systematic Biology 68:538–550.

[101]

RaboskyDL,Grundler M,AndersonC,ShiJJ,BrownJW, HuangH,Larson JG. 2014. BAMMtools, an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods in Ecology and Evolution 5:701–707.

[102]

Ramos-GutiérrezI,Moreno-SaizJC,Fernández-Mazuecos M. 2022. A western representative of an eastern clade: Phylogeographic history of the gypsum-associated plant Nepeta hispanica. Perspectives in Plant Ecology, Evolution and Systematics 57:125699.

[103]

RatoC,Carranza S,HarrisDJ. 2012. Evolutionary history of the genus Tarentola (Gekkota: Phyllodactylidae) from the Mediterranean Basin, estimated using multilocus sequence data. BMC Evolutionary Biology 12:14.

[104]

ReeRH,Sanmartín I. 2018. Conceptual and statistical problems with the DEC + J model of founder-event speciation and its comparison with DEC via model selection. Journal of Biogeography 45:741–749.

[105]

RevellLJ. 2012. Phytools. An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3:217–223.

[106]

RiberaI,Blasco-Zumeta J. 1998. Biogeographical links between steppe insects in the Monegros region (Aragón, NE Spain), the eastern Mediterranean, and central Asia. Journal of Biogeography 25:969–986.

[107]

Rodríguez-SánchezF,Pérez-BarralesR,Ojeda F,VargasP,ArroyoJ. 2008. The Strait of Gibraltar as a melting pot for plant biodiversity. Quaternary Science Reviews 27:2100–2117.

[108]

RöglF. 1999. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica 50:339–349.

[109]

RoquetC,BoucherFC, ThuillerW,Lavergne S. 2013. Replicated radiations of the alpine genus Androsace (Primulaceae) driven by range expansion and convergent key innovations. Journal of Biogeography 40:1874–1886.

[110]

SanmartínI. 2003. Dispersal vs. vicariance in the Mediterranean: Historical biogeography of the Palearctic Pachydeminae (Coleoptera, Scarabaeoidea). Journal of Biogeography 30:1883–1897.

[111]

SauquetH. 2013. A practical guide to molecular dating. Comptes Rendus Paleovol 12:355–367.

[112]

SchattnerU. 2010. What triggered the early-to-mid Pleistocene tectonic transition across the entire eastern Mediterranean? Earth and Planetary Science Letters 289:539–548.

[113]

SchusterM,Duringer P,GhienneJF,VignaudP,MackayeHT, LikiusA,Brunet M. 2006. The age of the Sahara desert. Science 311:821.

[114]

SękiewiczK,Dering M,RomoA,Dagher-KharratMB,Boratyńska K,OkT,BoratyńskiA. 2018. Phylogenetic and biogeographic insights into long-lived Mediterranean Cupressus taxa with a schizo-endemic distribution and Tertiary origin. Botanical Journal of the Linnean Society 188:190–212.

[115]

SivanD,Schattner U,MorhangeC,BoarettoE. 2010. What can a sessile mollusk tell about neotectonics? Earth and Planetary Science Letters 296:451–458.

[116]

SmithSA,BrownJW, WalkerJF. 2018. So many genes, so little time: A practical approach to divergence-time estimation in the genomic era. PloS ONE 13: e0197433.

[117]

SmithSA,MooreMJ, BrownJW,Yang Y. 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals andplants. BMC Evolutionary Biology 15:150.

[118]

SoulaimaniA,Ouanaimi H,SaddiqiO,BaidderL,MichardA. 2018. The Anti-Atlas Pan-African belt (Morocco): Overview and pending questions. Comptes Rendus Geoscience 350:279–288.

[119]

StöckM,SiciliaA, BelfioreNM,Buckley D,Lo BruttoS,Lo ValvoM,ArculeoM. 2008. Post-Messinian evolutionary relationships across the Sicilian channel: Mitochondrial and nuclear markers link a new green toad from Sicily to African relatives. BMC Evolutionary Biology 8:1–19.

[120]

StubbsRL,FolkRA, XiangCL,Soltis DE,CellineseN. 2018. Pseudo-parallel patterns of disjunctions in an Arctic-alpine plant lineage. Molecular Phylogenetics and Evolution 123:88–100.

[121]

SucJP. 1984. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307:429–432.

[122]

SucJP,PopescuSM, FauquetteS,Bessedik M,Jiménez-MorenoG, Bachirir TaoufiqN,KlotzS. 2018. Reconstruction of Mediterranean flora, vegetation and climate for the last 23 million years based on an extensive pollen data set. Ecologia Mediterranea 44:53–85.

[123]

SusannaA,Garcia-Jacas N. 2009. Cardueae (Carduoideae). In: Funk VA,Susanna A,Stuessy TF,Bayer RJ eds. Systematics, evolution, and biogeography of Compositae. Vienna: IAPT. 293–313.

[124]

SusannaA,Garcia-Jacas N,HidalgoO,VilatersanaR,Garnatje T. 2006. The Cardueae (Compositae) revisited: Insights from ITS,trnL-trnF, and matK nuclear and chloroplast DNA analysis. Annals of the Missouri Botanical Garden 93:150–171.

[125]

ThompsonJD. 2005. Plant evolution in the Mediterranean. Oxford: Oxford University Press.

[126]

TileyGP,Poelstra JW,Dos ReisM,YangZ,YoderAD. 2020. Molecular clocks without rocks: new solutions for old problems. Trends in Genetic 36:845–856.

[127]

TomaselloS,Oberprieler C. 2022. Reticulate evolution in the Western Mediterranean mountain ranges: The case of the Leucanthemopsis polyploid complex. Frontiers in Plant Science 13:842842.

[128]

VargasP,Fernández-Mazuecos M,HelenoR. 2018. Phylogenetic evidence for a Miocene origin of Mediterranean lineages: Species diversity, reproductive traits and geographical isolation. Plant Biology 20:157–165.

[129]

VernygoraOV,Campbell EO,GrishinNV,SperlingFAH,DupuisJR. 2022. Gauging ages of tiger swallowtail butterflies using alternate SNP analyses. Molecular Phylogenetics and Evolution 171:107465.

[130]

VilatersanaR. 2008. Estudios morfoanatómicos de los aquenios en el complejo Carduncellus-Carthamus (Asteraceae: Cardueae): su utilidad para la clasificación filogenética. Collectanea Botanica 27:37–64.

[131]

VilatersanaR,CallejaJA, Herrando-MorairaS,Garcia-JacasN,SusannaA. 2022. Molecular insights on the conflicting generic boundaries in the Carduncellus-Carthamus complex (Compositae). Taxon 71:1268–1286.

[132]

VilatersanaR,SusannaA, Garcia-JacasN,GarnatjeT. 2000a. Generic delimitation and phylogeny of the Carduncellus-Carthamus complex (Asteraceae) based on ITS sequences. Plant Systematics and Evolution 221:89–105.

[133]

VilatersanaR,SusannaA, Garcia-JacasN,GarnatjeT. 2000b. Karyology, generic delineation and dysploidy in the genera Carduncellus,Carthamus and Phonus (Asteraceae). Botanical Journal of the Linnean Society 134:425–438.

[134]

VitalesD,Garnatje T,PellicerJ,VallèsJ,Santos-Guerra A,SanmartínI. 2014. The explosive radiation of Cheirolophus (Asteraceae, Cardueae) in Macaronesia. BMC Evolutionary Biology 14:118.

[135]

WagenitzG. 1955. Pollenmorphologie und Systematik in der Gattung Centaurea L. s.l. Flora 142:213–279.

[136]

WangYJ,LiuJQ, MieheG. 2007. Phylogenetic origins of the Himalayan endemic Dolomiaea,Diplazoptilon and Xanthopappus (Asteraceae: Cardueae) based on three DNA regions. Annals of Botany 99:311–322.

[137]

WangYJ,SusannaA, Von Raab-StraubeE,MilneR,LiuJQ. 2009. Island-like radiation of Saussurea (Asteraceae: Cardueae) triggered by uplifts of the Qinghai–Tibetan Plateau. Biological Journal of the Linnean Society 97:893–903.

[138]

XiaM,CaiM, ComesHP,Zheng L,Ohi-TomaT,LeeJ,QiZ, KonowalikK,Li P,CameronKM,FuC. 2022. An overlooked dispersal route of Cardueae (Asteraceae) from the Mediterranean to East Asia revealed by phylogenomic and biogeographical analyses of Atractylodes. Annals of Botany 130:53–64.

[139]

XuLS,Herrando-Moraira S,SusannaA,Galbany-CasalsM,ChenYS. 2019. Phylogeny, origin and dispersal of Saussurea (Asteraceae) based on chloroplast genome data. Molecular Phylogenetics and Evolution 141:106613.

[140]

ZachosJ,PaganiM, SloanL,Thomas E,BillupsK. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693.

[141]

ZhangC,HuangCH, LiuM,HuY, PaneroJL,Luebert F,GaoT,MaH. 2021a. Phylotranscriptomic insights into Asteraceae diversity, polyploidy, and morphological innovation. Journal of Integrative Plant Biology 63:1273–1293.

[142]

ZhangX,LandisJB, SunY,ZhangH, FengT,Lin N,TiamiyuBB,HuangX,DengT, WangH,Sun H. 2021b. Macroevolutionary pattern of Saussurea (Asteraceae) provides insights into the drivers of radiating diversification. Proceedings of the Royal Society B 288:20211575.

[143]

ZhangZ,Ramstein G,SchusterM,LiC,ContouxC, YanQ. 2014. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature 513:401–404.

RIGHTS & PERMISSIONS

2024 The Authors. Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

187

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/