Perianth evolution and implications for generic delimitation in the eucalypts (Myrtaceae), including the description of the new genus,Blakella

Michael D. Crisp , Bui Q. Minh , Bokyung Choi , Robert D. Edwards , James Hereward , Carsten Kulheim , Yen Po Lin , Karen Meusemann , Andrew H. Thornhill , Alicia Toon , Lyn G. Cook

Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (5) : 942 -962.

PDF
Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (5) : 942 -962. DOI: 10.1111/jse.13047
Research Article

Perianth evolution and implications for generic delimitation in the eucalypts (Myrtaceae), including the description of the new genus,Blakella

Author information +
History +
PDF

Abstract

Eucalypts (Myrtaceae tribe Eucalypteae) are currently placed in seven genera. Traditionally,Eucalyptus was defined by its operculum, but when phylogenies placed Angophora, with free sepals and petals, as sister to the operculate bloodwood eucalypts, the latter were segregated into a new genus,Corymbia. Yet, generic delimitation in the tribe Eucalypteae remains uncertain. Here, we address these problems using phylogenetic analysis with the largest molecular data set to date. We captured 101 low-copy nuclear exons from 392 samples representing 266 species. Our phylogenetic analysis used maximum likelihood (IQtree) and multispecies coalescent (Astral). At two nodes critical to generic delimitation, we tested alternative relationships among Arillastrum, Angophora, Eucalyptus, and Corymbia using Shimodaira’s approximately unbiased test. Phylogenetic mapping was used to explore the evolution of perianth traits. Monophyly of Corymbia relative to Angophora was decisively rejected. All alternative relationships among the seven currently recognized Eucalypteae genera imply homoplasy in the evolutionary origins of the operculum. Inferred evolutionary transitions in perianth traits are congruent with divergences between major clades, except that the expression of separate sepals and petals in Angophora, which is nested within the operculate genus Corymbia, appears to be a reversal to the plesiomorphic perianth structure. Here, we formally raise Corymbia subg. Blakella to genus rank and make the relevant new combinations. We also define and name three sections within Blakella (Blakella sect. Blakella, Blakella sect. Naviculares, and Blakella sect. Maculatae), and two series within Blakella sect. Maculatae (Blakella ser. Maculatae and Blakella ser. Torellianae). Corymbia is reduced to the red bloodwoods.

Keywords

Angophora / Blakella / classification / Corymbia / Eucalyptus / homoplasy / low-copy nuclear loci / perianth evolution / phylogeny / targeted capture

Cite this article

Download citation ▾
Michael D. Crisp, Bui Q. Minh, Bokyung Choi, Robert D. Edwards, James Hereward, Carsten Kulheim, Yen Po Lin, Karen Meusemann, Andrew H. Thornhill, Alicia Toon, Lyn G. Cook. Perianth evolution and implications for generic delimitation in the eucalypts (Myrtaceae), including the description of the new genus,Blakella. Journal of Systematics and Evolution, 2024, 62(5): 942-962 DOI:10.1111/jse.13047

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AndrewsS. 2010. FastQC: A quality control tool for high throughput sequence data. Cambridge, UK: Babraham Institute.

[2]

Australian Plant Census (APC). The Australian National Species List [online]. https://biodiversity.org.au/nsl/ [accessed 3 September 2023].

[3]

BaylyMJ,RigaultP, SpokeviciusA,LadigesPY,AdesPK, AndersonC,Bossinger G,MerchantA,UdovicicF,WoodrowIE, TibbitsJ. 2013. Chloroplast genome analysis of Australian eucalypts—Eucalyptus,Corymbia,Angophora,Allosyncarpia and Stockwellia (Myrtaceae). Molecular Phylogenetics and Evolution 69:704–716.

[4]

BohteA,DrinnanAN. 2005. Floral development and systematic position of Arillastrum,Allosyncarpia,Stockwellia and Eucalyptopsis (Myrtaceae). Plant Systematics and Evolution 251:53–70.

[5]

BolandDL,SedgleyM. 1986. Stigma and style morphology in relation to taxonomy and breeding systems in Eucalyptus and Angophora (Myrtaceae). Australian Journal of Botany 34:569–584.

[6]

BrookerMIH,KleinigDA. 1983. Field guide to eucalypts. Volume 1. South-eastern Australia. Melbourne and Sydney: Inkata Press.

[7]

BrookerMIH. 2000. A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Australian Systematic Botany 13:79–148.

[8]

BrownR. 1814. General remarks, geographical and systematical, on the botany of Terra Australis. In: Flinders M A voyage to Terra Australis. London: Nicol. 599.

[9]

CarrDJ,CarrSGM. 1987. Eucalyptus II. The rubber cuticle, and other studies of the Corymbosae. Canberra: Phytoglyph Press. 372

[10]

ChernomorO,von Haeseler A,MinhBQ. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65:997–1008.

[11]

ChoiB,CrispMD, CookLG,Edwards RD,ToonA,KülheimC. 2019. Identifying genetic markers for a range of phylogenetic levels–from species to family level. PLoS One 14: e0218995.

[12]

DrinnanAN,LadigesPY. 1988. Perianth development in Angophora and the bloodwood eucalypts (Myrtaceae). Plant Systematics and Evolution 160:219–239.

[13]

DrinnanAN,LadigesPY. 1989a. Corolla and androecium development in some Eudesmia eucalypts (Myrtaceae). Plant Systematics and Evolution 165:239–254.

[14]

DrinnanAN,LadigesPY. 1989b. Operculum development in Eucalyptus cloeziana and Eucalyptus informal subg. Monocalyptus (Myrtaceae). Plant Systematics and Evolution 166:183–196.

[15]

DrinnanAN,LadigesPY. 1989c. Operculum development in the Eudesmieae-B eucalypts and Eucalyptus caesia (Myrtaceae). Plant Systematics and Evolution 165:227–237.

[16]

DrinnanAN,LadigesPY. 1991a. Floral development and systematic position of Eucalyptus curtisii (Myrtaceae). Australian Systematic Botany 4:539–551.

[17]

DrinnanAN,LadigesPY. 1991b. Floral development in the 'Symphyomyrtus group’ of Eucalypts (Eucalyptus: Myrtaceae). Australian Systematic Botany 4:553–562.

[18]

GibbsAK,Udovicic F,DrinnanAN,LadigesPY. 2009. Phylogeny and classification of Eucalyptus subgenus Eudesmia (Myrtaceae) based on nuclear ribosomal DNA, chloroplast DNA and morphology. Australian Systematic Botany 22:158–179.

[19]

GriffinAR,BurgessIP, WolfL. 1988. Patterns of natural and manipulated hybridization in the genus Eucalyptus L’Herit.: A review. Australian Journal of Botany 36:41–66.

[20]

HealeyA,LeeDJ, FurtadoA,Henry RJ. 2018. Evidence of inter-sectional chloroplast capture in Corymbia among sections Torellianae and Maculatae. Australian Journal of Botany 66:369–378.

[21]

HillKD,JohnsonLAS. 1995. Systematic studies in the eucalypts, 7. A revision of the bloodwoods, genus Corymbia (Myrtaceae). Telopea 6:185–504.

[22]

HoangDT,Chernomor O,von HaeselerA,MinhBQ,VinhLS. 2018. UFBoot2: Improving the Ultrafast Bootstrap approximation. Molecular Biology and Evolution 35:518–522.

[23]

JohnsonLAS. 1972. Evolution and classification in Eucalyptus. Proceedings of the Linnean Society of New South Wales 97:11–29.

[24]

JohnsonLAS,BriggsBG. 1984. Myrtales and Myrtaceae—A phylogenetic analysis. Annals of the Missouri Botanical Garden 71:700–756.

[25]

JohnsonMG,PokornyL, DodsworthS,Botigue LR,CowanRS,DevaultA,Eiserhardt WL,EpitawalageN,ForestF,KimJT, Leebens-MackJH,LeitchIJ,MaurinO, SoltisDE,Soltis PS,WongGK,BakerWJ,WickettNJ. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-Medoids clustering. Systematic Biology 68:594–606.

[26]

KalyaanamoorthyS,Minh BQ,WongTKF,von HaeselerA,JermiinLS. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14:587–589.

[27]

LadigesPY. 1984. A comparative study of trichomes in Angophora Cav. and Eucalyptus l’Herit.—A question of homology. Australian Journal of Botany 32:561–574.

[28]

LadigesPY,Humphries CJ. 1983. A cladistic study of Arillastrum,Angophora and Eucalyptus (Myrtaceae). Botanical Journal of The Linnean Society 87:105–134.

[29]

LadigesPY,Udovicic F,DrinnanAN. 1995. Eucalypt phylogeny—Molecules and morphology. Australian Systematic Botany 8:483–487.

[30]

LadigesPY,Udovicic F. 2000. Comment on a new classification of the Eucalypts. Australian Systematic Botany 13:149–152.

[31]

LewisPO. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50:913–925.

[32]

LiH,DurbinR. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760.

[33]

LiH,Handsaker B,WysokerA,FennellT,RuanJ, HomerN,Marth G,AbecasisG,DurbinR. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079.

[34]

MaddisonWP,Maddison DR. 2019. Mesquite: A modular system for evolutionary analysis, version 3.61 [online]. Available from https://www.mesquiteproject.org.

[35]

McKinnonGE,SteaneDA, PottsBM,Vaillancourt RE. 1999. Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtaceae). American Journal of Botany 86:1038–1046.

[36]

McKinnonGE,Vaillancourt RE,JacksonHD,PottsBM. 2001. Chloroplast sharing in the Tasmanian eucalypts. Evolution 55:703–711.

[37]

McKinnonGE,Vaillancourt RE,SteaneDA,PottsBM. 2004. The rare silver gum,Eucalyptus cordata, is leaving its trace in the organellar gene pool of Eucalyptus globulus. Molecular Ecology 13:3751–3762.

[38]

MillerMA,Pfeiffer W,SchwartzT. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA. Piscataway, NJ: Institute of Electrical and Electronics Engineers. 18.

[39]

MinhBQ,HahnMW, LanfearR. 2020. New methods to calculate Concordance Factors for phylogenomic datasets. Molecular Biology and Evolution 37:2727–2733.

[40]

MinhBQ,NguyenMA, von HaeselerA. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30:1188–1195.

[41]

MirarabS,WarnowT. 2015. ASTRAL-II: Coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31: i44–i52.

[42]

MyburgAA,Grattapaglia D,TuskanGA,HellstenU,HayesRD, GrimwoodJ,Jenkins J,LindquistE,TiceH,BauerD, GoodsteinDM,Dubchak I,PoliakovA,MizrachiE,KullanAR, HusseySG,Pinard D,van der MerweK,SinghP,van Jaarsveld I,Silva-JuniorOB,TogawaRC,PappasMR, FariaDA,Sansaloni CP,PetroliCD,YangX,RanjanP, TschaplinskiTJ,YeCY,LiT, SterckL,Vanneste K,MuratF,SolerM,Clemente HS,SaidiN,Cassan-WangH,DunandC, HeferCA,Bornberg-Bauer E,KerstingAR,ViningK,Amarasinghe V,RanikM,NaithaniS,ElserJ, BoydAE,Liston A,SpataforaJW,DharmwardhanaP,RajaR, SullivanC,Romanel E,Alves-FerreiraM,KülheimC,FoleyW, CarochaV,Paiva J,KudrnaD,BrommonschenkelSH,Pasquali G,ByrneM,RigaultP,TibbitsJ, SpokeviciusA,JonesRC,SteaneDA, VaillancourtRE,PottsBM,JoubertF, BarryK,Pappas GJ,StraussSH,JaiswalP,Grima-Pettenati J,SalseJ,Van de PeerY,RokhsarDS, SchmutzJ 2014. Genome sequence of Eucalyptus grandis. Nature 510:356–362.

[43]

NguyenL-T,SchmidtHA, von HaeselerA,MinhBQ. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32:268–274.

[44]

NicolleD. 2022. Classification of the eucalypts (Angophora,Corymbia, and Eucalyptus) Version 6 [online] http://www.dn.com.au/Classification-Of-The-Eucalypts.pdf [accessed 2023].

[45]

NicolleD,JonesRC. 2018. A revised classification for the predominantly eastern Australian Eucalyptus subgenus Symphyomyrtus sections Maidenaria,Exsertaria,Latoangulatae and related smaller sections (Myrtaceae). Telopea 21:129–145.

[46]

OchiengJW,HenryRJ, BaverstockPR,SteaneDA,Shepherd M. 2007a. Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs. Molecular Phylogenetics and Evolution 44:752–764.

[47]

OchiengJW,SteaneDA, LadigesPY,Baverstock PR,HenryRJ,ShepherdM. 2007b. Microsatellites retain phylogenetic signals across genera in eucalypts (Myrtaceae). Genetics and Molecular Biology 30:1125–1134.

[48]

Parra-OC,BaylyMJ, UdovicicF,Ladiges PY. 2006. ETS sequences support the monophyly of the eucalypt genus Corymbia (Myrtaceae). Taxon 55:653–663.

[49]

Parra-OC,BaylyMJ, DrinnanA,Udovicic F,LadigesP. 2009. Phylogeny, major clades and infrageneric classification of Corymbia (Myrtaceae), based on nuclear ribosomal DNA and morphology. Australian Systematic Botany 22:384–399.

[50]

PryorLD,KnoxRB. 1971. Operculum development and evolution in eucalypts. Australian Journal of Botany 19:143–171.

[51]

RimmerA,PhanH, MathiesonI,Iqbal Z,TwiggSRF,WGS500 Consortium,WilkieAOM, McVeanG,Lunter G. 2014. Integrating mapping-, assembly-and haplotype-based approaches for calling variants in clinical sequencing applications. Nature Genetics 46:912–918.

[52]

SchusterTM,SetaroSD, TibbitsJFG,Batty EL,FowlerRM,McLayTGB,WilcoxS, AdesPK,Bayly MJ. 2018. Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae). PloS One 13: e0195034.

[53]

SempleTL,GullanPJ, HodgsonCJ,Hardy NB,CookLG. 2015. Systematic review of the Australian ‘bush-coconut’ genus Cystococcus (Hemiptera: Eriococcidae) uncovers a new species from Queensland. Invertebrate Systematics 29:287–312.

[54]

ShimodairaH. 2002. An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51:492–508.

[55]

SleeAV,BrookerMIH, DuffySM,West JG. 2020. EUCLID: Eucalypts of Australia (4th Ed.). Canberra: Centre for Australian National Biodiversity Research.

[56]

StamatakisA. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.

[57]

SteaneDA,McKinnon GE,VaillancourtRE,PottsBM. 1999. ITS sequence data resolve higher level relationships among the eucalypts. Molecular Phylogenetics and Evolution 12:215–223.

[58]

SteaneDA,NicolleD, McKinnonGE,Vaillancourt RE,PottsBM. 2002. Higher-level relationships among the eucalypts are resolved by ITS sequence data. Australian Systematic Botany 15:49–62.

[59]

StokoeRL,Shepherd M,LeeDJ,NiklesDG,HenryRJ. 2001. Natural inter-subgeneric hybridization between Eucalyptus acmenoides Schauer and Eucalyptus cloeziana F. Muell. (Myrtaceae) in southeast Queensland. Annals of Botany 88:563–570.

[60]

ThornhillAH,CrispMD. 2012. Phylogenetic assessment of pollen characters in Myrtaceae. Australian Systematic Botany 25:171–187.

[61]

ThornhillAH,HoSYW, KülheimC,CrispMD. 2015. Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Molecular Phylogenetics and Evolution 93:29–43.

[62]

ThornhillAH,CrispMD, KülheimC,LamKE,NelsonLA, YeatesDK,Miller JT. 2019. A dated molecular perspective of eucalypt taxonomy, evolution and diversification. Australian Systematic Botany 32:29–48.

[63]

UdovicicF,McFadden GI,LadigesPY. 1995. Phylogeny of Eucalyptus and Angophora based on 5S rDNA spacer sequence data. Molecular Phylogenetics and Evolution 4:247–256.

[64]

UdovicicF,LadigesPY. 2000. Informativeness of nuclear and chloroplast DNA regions and the phylogeny of the eucalypts and related genera (Myrtaceae). Kew Bulletin 55:633–645.

[65]

WhittockS,SteaneDA, VaillancourtRE,PottsBM. 2003. Molecular evidence shows that the tropical boxes (Eucalyptus subgenus Minifructus) are over-ranked. Transactions of the Royal Society of South Australia 127:27–32.

[66]

WillisJL. 1951. The anatomy and morphology of the operculum in the genus Eucalyptus. Proceedings of the Linnean Society of New South Wales 76:31–35.

[67]

WilsonPG,O’Brien MM,HeslewoodMM,QuinnCJ. 2005. Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution 251:3–20.

[68]

WilsonPG. 2011. Myrtaceae. In: Kubitzki K ed. The families and genera of vascular plants. Volume X Flowering plants: Eudicots. Sapindales, Cucurbitales, Myrtaceae. Berlin: Springer-Verlag:212–271.

RIGHTS & PERMISSIONS

2023 The Authors. Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

284

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/