A phylogenetic framework to study desirable traits in the wild relatives of Theobroma cacao (Malvaceae)

Ana M. Bossa-Castro , Matheus Colli-Silva , José R. Pirani , Barbara A. Whitlock , Laura T. Morales Mancera , Natalia Contreras-Ortiz , Martha L. Cepeda-Hernández , Federica Di Palma , Martha Vives , James E. Richardson

Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (5) : 963 -978.

PDF
Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (5) : 963 -978. DOI: 10.1111/jse.13045
Research Article

A phylogenetic framework to study desirable traits in the wild relatives of Theobroma cacao (Malvaceae)

Author information +
History +
PDF

Abstract

Crop wild relatives (CWRs) of cultivated species may provide a source of genetic variation that can contribute to improving product quantity and quality. To adequately use these potential resources, it is useful to understand how CWRs are related to the cultivated species and to each other to determine how key crop traits have evolved and discover potentially usable genetic information. The chocolate industry is expanding and yet is under threat from a variety of causes, including pathogens and climate change. Theobroma cacao L. (Malvaceae), the source of chocolate, is a representative of the tribe Theobromateae that consists of four genera and c. 40 species that began to diversify over 25 million years ago. The great diversity within the tribe suggests that its representatives could exhibit advantageous agronomic traits. In this study, we present the most taxonomically comprehensive phylogeny of Theobromateae to date. DNA sequence data from WRKY genes were assembled into a matrix that included 56 morphological characters and analyzed using a Bayesian approach. The inclusion of a morphological data set increased resolution and support for some branches of the phylogenetic tree. The evolutionary trajectory of selected morphological characters was reconstructed onto the phylogeny. This phylogeny provides a framework for the study of morphological and physiological trait evolution, which can facilitate the search for agronomically relevant traits.

Keywords

cacao / crop wild relatives / Herrania / Malvaceae / morphological and molecular characters / phylogeny / Theobroma / trait evolution

Cite this article

Download citation ▾
Ana M. Bossa-Castro, Matheus Colli-Silva, José R. Pirani, Barbara A. Whitlock, Laura T. Morales Mancera, Natalia Contreras-Ortiz, Martha L. Cepeda-Hernández, Federica Di Palma, Martha Vives, James E. Richardson. A phylogenetic framework to study desirable traits in the wild relatives of Theobroma cacao (Malvaceae). Journal of Systematics and Evolution, 2024, 62(5): 963-978 DOI:10.1111/jse.13045

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AliZAA. 2020. Taxonomic study of Glossostemon bruguieri Desf. (Malvaceae) in Iraq. Plant Archives 20:926–929.

[2]

AlvimPDE. 1984. Flowers of cocoa. Cocoa Growers’ Bulletin 35:23–31.

[3]

AndersonJT,SongB-H. 2020. Plant adaptation to climate change—Where are we? Journal of Systematics and Evolution 58:533–545.

[4]

AnjosLJS,Barreiros de Souza E,AmaralCT,IgawaTK,Mann de Toledo P. 2021. Future projections for terrestrial biomes indicate widespread warming and moisture reduction in forests up to 2100 in South America. Global Ecology and Conservation 25: e01441.

[5]

ArgoutX,MartinG, DrocG,Fouet O,LabadieK,RivalsE,AuryJM, LanaudC. 2017. The cacao Criollo genome v2.0: An improved version of the genome for genetic and functional genomic studies. BMC Genomics 18:730.

[6]

ArgoutX,SalseJ, AuryJM,Guiltinan MJ,DrocG,GouzyJ,AllegreM, ChaparroC,Legavre T,MaximovaSN,AbroukM,MuratF, FouetO,Poulain J,RuizM,RoguetY,Rodier-Goud M,Barbosa-NetoJF,SabotF,KudrnaD, AmmirajuJSS,Schuster SC,CarlsonJE,SalletE,SchiexT, DievartA,Kramer M,GelleyL,ShiZ,Bérard A,ViotC,BoccaraM,Risterucci AM,GuignonV,SabauX,AxtellMJ, MaZ,ZhangY, BrownS,Bourge M,GolserW,SongX,ClementD, RivallanR,Tahi M,AkazaJM,PitollatB,Gramacho K,D’HontA,BrunelD,InfanteD, KebeI,Costet P,WingR,McCombieWR,Guiderdoni E,QuetierF,PanaudO,WinckerP, BocsS,Lanaud C. 2011. The genome of Theobroma cacao. Nature Genetics 43:101–108.

[7]

AzevedoDSR,GustavoS, LemosLSL,Lopes UV,PatrocinioNGRBP,AlvesRM,Marcellino LH,ClementD,MicheliF,Gramacho KP. 2017. Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae). PLoS One 12: e0170799.

[8]

BorroneJW,KuhnDN, SchnellRJ. 2004. Isolation, characterization, and development of WRKY genes as useful genetic markers in Theobroma cacao. Theoretical and Applied Genetics 109:495–507.

[9]

BorroneJW,MeerowAW, KuhnDN,Whitlock BA,SchnellRJ. 2007. The potential of the WRKY gene family for phylogenetic reconstruction: An example from the Malvaceae. Molecular Phylogenetics and Evolution 44:1141–1154.

[10]

BouckaertR,HeledJ, KühnertD,VaughanT,WuCH, XieD,SuchardMA, RambautA,Drummond AJ. 2014. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: e1003537.

[11]

BrozynskaM,FurtadoA, HenryRJ. 2016. Genomics of crop wild relatives: Expanding the gene pool for crop improvement. Plant Biotechnology Journal 14:1070–1085.

[12]

BystrakPG,WirthWW. 1978. The North American species of Forcipomyia, subgenus Euprojoannisia (Diptera: Ceratopogonidae). U.S. Department of Agriculture Technical Bulletin no. 1591.

[13]

ChampagneC,SinhaN. 2004. Compound leaves: Equal to the sum of their parts? Development. 131:4401–4412.

[14]

Colli-SilvaM,PiraniJR. 2020. Estimating bioregions and under-collected areas in South America by revisiting Byttnerioideae, Helicteroideae and Sterculioideae (Malvaceae) occurrence data. Flora 271:151688.

[15]

Colli-SilvaM,Richardson JR,PiraniJR. 2023. A taxonomic dataset of preserved specimen occurrences of Theobroma and Herrania (Malvaceae, Byttnerioideae) stored in 2020. Biodiversity Data Journal 11: e99646.

[16]

CortésAJ,Cornille A,YocktengR. 2022. Evolutionary genetics of crop-wild complexes. Genes 13:1.

[17]

CouvreurTLP,ChatrouLW, SosefMSM,Richardson JE. 2008. Molecular phylogenetics reveal multiple tertiary vicariance origins of African rain forest trees. BMC Evolutionary Biology 6:54–63.

[18]

CuatrecasasJ. 1964. Cacao and its allies: A taxonomic revision of the genus Theobroma. Contributions from the United States National Herbarium 35:379–614.

[19]

DarribaD,TaboadaGL, DoalloR,Posada D. 2012. jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9:772.

[20]

DavisAP,GoleTW, BaenaS,Moat J. 2012. The impact of climate change on indigenous Arabica coffee (Coffea arabica): Predicting future trends and identifying priorities. PLoS One 7: e47981.

[21]

DavisAP,MieuletD, MoatJ,Sarmu D,HaggarJ. 2021. Arabica-like flavour in a heat-tolerant wild coffee species. Nature Plants 7:413–418.

[22]

de laFuente deDiez Canseco L ed. 2018. Cacao, the treasure of the Amazon. Lima: Fondo Editorial USIL.

[23]

DoyleJJ,DoyleJL. 1990. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin of the Botanical Society of America 19:11–15.

[24]

DrummondAJ,HoSYW, PhilipsMJ,Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4(5): e88.

[25]

EfroniI,EshedY, LifshitzE. 2010. Morphogenesis of simple and compound leaves: A critical review. The Plant Cell 22:1019–1032.

[26]

EhleringerJR,MooneyHA. 1978. Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub. Oecologia 37:183–200.

[27]

EllisB,DalyDC, HickeyLJ,Mitchell JD,JohnsonKR,WilfP,WingSL. 2009. Manual of leaf architecture. Ithaca: Cornell University Press.

[28]

EntwistlePF. 1972. Pests of cocoa. London: Longmans.

[29]

EugemT,RushtonPJ, RobatzekS,Somssich IE. 2000. The SRKY superfamily of plant transcription factors. Trends in Plant Science 5(5):199–206.

[30]

EuropeanCommission. 2014. Commission Regulation (EU) No 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs Text with EEA relevance. Official Journal of the European Union 138:75–79.

[31]

EvansHC. 2007. Cacao diseases-the trilogy revisited. Phytopathology 12:1640–1643.

[32]

Flint-GarciaSA. 2013. Genetics and consequences of crop domestication. Journal of Agricultural and Food Chemistry 61:8267–8276.

[33]

FreytagGF. 1951. A revision of the genus Guazuma. Ceiba 1:193–225.

[34]

González-OrozcoCE,GalánAAS,RamosPE, YocktengR. 2020. Exploring the diversity and distribution of crop wild relatives of cacao (Theobroma cacao L.) in Colombia. Genetic Resources and Crop Evolution 67:2071–2085.

[35]

González-OrozcoCE,PorcelM,Rodriguez-Medina C,YocktengR. 2022. Extreme climate refugia: A case study of wild relatives of cacao (Theobroma cacao) in Colombia. Biodiversity and Conservation 31:161–182.

[36]

GoodsteinDM,ShuS, HowsonR,Neupane R,HayesRD,FazoJ,MitrosT, DirksW,Hellsten U,PutnamN,RokhsarDS. 2012. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research 40(D1): D1178–D1186.

[37]

GrilliG,Cantillo T,FerriniS,RichardsonJE,TurnerK, Di MariaC,Erazo J,AzcárateJ,Di PalmaF. 2022. Perspectives on a bioeconomy development path for Colombia. Cacao farming for peace building and rural development. Report 3. GROW Colombia Project Series. Norwich: GROW Colombia Project UKRI GCRF Grant BB/P028098/1.

[38]

GuindonO,GascuelS. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52:696–704.

[39]

HallTA. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95–98.

[40]

HalleF,OldemanRAA, TomlinsonPB. 1978. Tropical Trees and Forests: an architectural analysis. Berlin: Springer-Verlag. 463.

[41]

Hernández-GutiérrezR,MagallónS. 2019. The timing of Malvales evolution: Incorporating its extensive fossil record to inform about lineage diversification. Molecular Phylogenetics and Evolution 140: a106606.

[42]

HollingsworthPM,DawsonIK, Goodall-CopestakeWP,RichardsonJE,WeberJC, Sotelo MontesC,PenningtonRT. 2005. Do farmers reduce genetic diversity when they domesticate tropical trees? A case study from Amazonia. Molecular Ecology 14:497–501.

[43]

IgawaTK,ToledoPMD, AnjosLJS. 2022. Climate change could reduce and spatially reconfigure cocoa cultivation in the Brazilian Amazon by 2050. PLoS One 17: e0262729.

[44]

KearseM,MoirR, WilsonA,Stones-Havas S,CheungM,SturrockS,BuxtonS, CooperA,Markowitz S,DuranC,ThiererT,AshtonB, MentjiesP,Drummond A. 2012. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649.

[45]

KulkarniM,Soolanayakanahally R,OgawaS,UgaY,Selvaraj MG,KagaleS. 2017. Drought response in wheat: Key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Frontiers in Chemistry 5:106.

[46]

LäderachP,Martinez-Valle A,SchrothG,CastroN. 2013. Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire. Climatic Change 119:841–854.

[47]

MaddisonWP,Maddison DR. 2021. Mesquite: A modular system for evolutionary analysis. Version 3.70 [online]. Available from http://www.mesquiteproject.org. [accessed 19 December 2023].

[48]

MammadovJ,Buyyarapu R,GuttikondaSK,ParliamentK,Abdurakhmonov IY,KumpatlaSP. 2018. Wild relatives of maize, rice, cotton, and soybean: Treasure troves for tolerance to biotic and abiotic stresses. Frontiers in Plant Science 9: a886.

[49]

MarelliJP,GuestDI, BayleyBA,Evans HC,BrownJK,JunaidM,BarretoRW, LisboaDO,Puig AS. 2019. Chocolate under threat from old and new diseases. Phytopathology 109:1331–1343.

[50]

MaxtedN,Ford-Lloyd BV,JuryS,KellS,Scholten M. 2006. Towards a definition of a crop wild relative. Biodiversity and Conservation 15:2673–2685.

[51]

MaxtedN,KellS. 2009. Establishment of a global network for the in situ conservation of crop wild relatives: Status and needs. Commission on Genetic Resources for Food and Agriculture. FAO.

[52]

McElroyMS,NavarroAJR, MustigaG,Stack C,GezanS,PeñaG,SarabiaW, SaquicelaD,Sotomayor I,DouglasGM,MigicovskyZ,AmoresF, TarquiO,Myles S,MotamayorJC. 2018. Prediction of cacao (Theobroma cacao) resistance to Moniliophthora spp. diseases via genome-wide association analysis and genomic selection. Frontiers in Plant Science 9:343.

[53]

MoatJ,Williams J,BaenaS,WilkinsonT,GoleTW, ChallaZK,Demissew S,DavisAP. 2017. Resilience potential of the Ethiopian coffee sector under climate change. Nature Plants 3:17081.

[54]

MotamayorJC,Mockaitis K,SchmutzJ,HaiminenN,Livingstone D,CornejoO,FindleySD,ZhengP, UtroF,Royaert S,SaskiC,JenkinsJ,Podicheti R,ZhaoM,SchefflerBE,StackJC, FeltusFA,Mustiga GM,AmoresF,PhillipsW,MarelliJP, MayGD,Shapiro H,MaJ,BustamanteCD,SchnellRJ, MainD,Gilbert D,ParidaL,KuhnDN. 2013. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biology 14: r53.

[55]

MournetP,Beviláqua de Albuquerque PS,AlvesRM,Oliveira Silva-WerneckJ,RivallanR,Marcellino LH,ClémentD. 2020. A reference high-density genetic map of Theobroma grandiflorum (Willd. ex Spreng) and QTL detection for resistance to witches’ broom disease (Moniliophthora perniciosa). Tree Genetics and Genomes 16: a89.

[56]

OchoaR. 2017. Jaén y la cultura Marañón [VIDEO]. Available from https://larepublica.pe/domingo/1147164-montegrandey-la-cultura-maraNOn/

[57]

Olivera-NúñezQ. 2018. Jaén: Arqueología y turismo. Perú: Municipalidad Provincial de Jaén.

[58]

Osorio-GuarínJA,Berdugo-Cely J,CoronadoRA,ZapataYP,Quintero C,Gallego-SánchezG, YocktengR. 2017. Colombia a source of cacao genetic diversity as revealed by the population structure analysis of germplasm bank of Theobroma cacao L. Frontiers in Plant Science 8:1994.

[59]

PeriyannanS,MooreJ, AyliffeM,Bansal U,WangX,HuangL,DealK, LuoM,KongX, BarianaH,Mago R,McIntoshR,DoddsP,DvorakD, LagudahE. 2013. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788.

[60]

RambautA,Drummond AJ,XieD,BaeleG,SuchardMA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67:901–904.

[61]

RichardsonJE,Whitlock BA,MeerowAW,MadriñánS. 2015. The age of chocolate: A diversification history of Theobroma and Malvaceae. Frontiers in Ecology and Evolution 3:120.

[62]

RushtonPJ,Somssich IE,RinglerP,ShenQJ. 2010. WRKY transcription factors. Trends in Plant Science 15(5):247–258.

[63]

SaintenacC,ZhangW, SalcedoA,Rouse MN,TrickHN,AkhunovE,Dubcovsky J. 2013. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786.

[64]

SarkinenT,StaatsM, RichardsonJE,CowanR,BakkerFT. 2012. How to open the treasure chest: Optimizing DNA extraction from herbarium specimens. PLoS One 7(8):e43808.

[65]

Saslis-LagoudakisCH,Savolainen V,WilliamsonEM,ForestF,Wagstaff SJ,BaralSR,WatsonMF,PendryCA, HawkinsJA. 2012. Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proceedings of the National Academy of Sciences USA 109:15835–15840.

[66]

SchultesRE. 1958. A synopsis of the genus Herrania. Journal of the Arnold Arboretum 34:217–278.

[67]

SoriaSDJ. 1970. Studies on Forcipomyia spp. Midges (Diptera: Ceratopogonidae) related to the pollination of Theobroma cacao L. Doctoral Dissertation. Madison: University of Wisconsin.

[68]

Sousa SilvaCR,Figueira A. 2004. Phylogenetic analysis of Theobroma (Sterculiaceae) based on Kunitz-like trypsin inhibitor sequences. Plant Systematics and Evolution,250(1–2):93–104.

[69]

StaatsM,ErkensRHJ, van de VossenbergB,WieringaJJ,Kraaijeveld K,GemlJ,RichardsonJE,BakkerFT. 2013. Exploring genomic treasure troves: Whole-genome sequencing of herbarium and insect museum specimens. PLoS One 8(7): e69189.

[70]

SwensonU,Richardson JE,BartishIV. 2008. Multi-gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): Evidence of generic polyphyly and extensive morphological homoplasy. Cladistics 24:1006–1031.

[71]

TanedaH,SperryJS. 2008. A case-study of water transport in co-occurring ring-versus diffuse-porous trees: Contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiology 28:1641–1651.

[72]

ThiersB. 2022. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih/. [accessed 19 December 2023].

[73]

Toledo-HernándezM,WangerTC,Tscharntke T. 2017. Neglected pollinators: Can enhanced pollination services improve cocoa yields? A review. Agriculture, Ecosystems and Environment 247:137–148.

[74]

ValdezFX. 2013. Arqueología Amazonica: Las Civilizaciones Ocultas del Bosque Tropical. Quito, Ecuador: IRD Éditions. 395.

[75]

VansynghelJ,Ocampo-Ariza C,MaasB,MartinEA,ThomasE, Hanf-DresslerT,SchumacherNC,Ulloque-Samatelo C,TscharntkeT,Steffan-DewenterI. 2022. Cacao flower visitation: Low pollen deposition, low fruit set and dominance of herbivores. Ecological Solutions and Evidence 3: e12140.

[76]

VooraV,Bermúdez S,LarreaC. 2019. Global market report: Cocoa. Winnipeg, Canada: International Institute for Sustainable Development (IISD). 12.

[77]

WebbLJ. 1959. A physiognomic classification of Australian rain forests. Journal of Ecology 47:551–570.

[78]

WhitlockBA,BaumDA. 1999. Phylogenetic relationships of Theobroma and Herrania (Sterculiaceae) based on sequences of the nuclear gene vicilin. Systematic Botany 24:128–138.

[79]

WhitlockBA,BayerC, BaumDA. 2001. Phylogenetic relationships and floral evolution of the Byttnerioideae (“Sterculiaceae” or Malvaceae s.l.) based on sequences of the chloroplast gene, ndhF. Systematic Botany 26:420–437.

[80]

WinderJA. 1978. Cocoa flower Diptera: Their identity, pollinating activity and breeding sites. Proceedings of the National Academy of Sciences USA 24:5–18.

[81]

YoungAM. 1984. Mechanisms of pollination by Phoridae (Diptera) in some Herrania species (Sterculiaceae) in Costa Rica. Proceedings of the Entomological Society of Washington 86:503–518.

[82]

ZarrilloS,GaikwadN, LanaudC,Powis T,ViotC,LesurI,FouetO, ArgoutX,Guichoux E,SalinF,SolorzanoRL,BouchezO, VignesH,Severts P,HurtadoJ,YepezA,Grivetti L,BlakeM,ValdezF. 2018. The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nature Ecology and Evolution 2:1879–1888.

[83]

ZhangF,WenY, GuoX. 2014. CRISPR/Cas9 for genome editing: Progress, implications and challenges. Human Molecular Genetics 23: R40–R46.

RIGHTS & PERMISSIONS

2023 The Authors. Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

209

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/