The evolutionary history and distribution of cactus germplasm resources, as well as potential domestication under a changing climate

Darya Khan , AJ Harris , Qamar U. Zaman , Hong-Xin Wang , Jun Wen , Jacob B. Landis , Hua-Feng Wang

Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (5) : 858 -875.

PDF
Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (5) : 858 -875. DOI: 10.1111/jse.13042
Review

The evolutionary history and distribution of cactus germplasm resources, as well as potential domestication under a changing climate

Author information +
History +
PDF

Abstract

The angiosperm family Cactaceae, a member of the Caryophyllales, is a large and diverse group of stem succulents comprising 1, 438–1, 870 species within approximately 130 genera predominantly distributed from northern Canada to Patagonia. Four centers of diversity from Central and North America (Chihuahua, Puebla-Oaxaca, Sonora-Sinaloan, and Jalisco) and three centers of diversity from South America (Southern Central Andes, Caatinga, and Mara Atlantica) have played a pivotal role in disbursing cacti around the globe. Mexico is considered the richest area in cacti species with close to 563 species grouped into 50 genera. Approximately 118 species have been domesticated by Mesoamerican people as food crops and for ornamental purposes. Cacti inhabit a wide range of ecosystems and climate regions, ranging from tropical to subtropical and from arid to semiarid regions. Species belonging to the genus Opuntia are the major food crop producers in the family. Cacti have derived characteristics from familial synapomorphies within the Caryophyllales. Reproduction occurs through pollination facilitated by birds, bats, bees, and other insects. Climate variability, whether natural or human-induced threatens global crop production including high temperatures, salinity, drought, flood, changes in soil pH, and urbanization. Cacti have several adaptations that are important for coping with abiotic stresses, such as crassulacean acid metabolism (CAM photosynthesis), as well as modifications to root and stem physiological pathways. This review aims to provide a comprehensive view of the fruit crops in Cactaceae, including their evolution, worldwide distribution, and the environmental factors impacting cultivation.

Keywords

biotic and abiotic stresses / Cactaceae / edible fruits / evolution / germplasm resources / origin and distribution

Cite this article

Download citation ▾
Darya Khan, AJ Harris, Qamar U. Zaman, Hong-Xin Wang, Jun Wen, Jacob B. Landis, Hua-Feng Wang. The evolutionary history and distribution of cactus germplasm resources, as well as potential domestication under a changing climate. Journal of Systematics and Evolution, 2024, 62(5): 858-875 DOI:10.1111/jse.13042

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AhmadS,AvtarR, SethiM,Surjan A. 2016. Delhi’s land cover change in post transit era. Cities 50:111–118.

[2]

AizenMA,Garibaldi LA,CunninghamSA,KleinAM. 2009. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany 103:1579–1588.

[3]

AllisonI,BindoffNL, BindschadlerRA,CoxPM,de Noblet N,EnglandMH,FrancisJE,GruberN, HaywoodAM,Karoly DJ,KaserG. 2011. The Copenhagen diagnosis: Updating the world on the latest climate science. Oxford: Elsevier. 114:2.

[4]

AndersonEF. 1996. Peyote: The divine cactus. Tucson: University of Arizona Press.

[5]

AndersonEF. 2001. The cactus family. Portland, OR, USA: Timber Press.

[6]

AndradeJL,De la Barrera E,GarcíaCR,RicaldeMF,SotoGV, CerveraJC. 2007. El metabolismo ácido de las crasuláceas: diversidad, fisiología ambiental y productividad. Boletín de la Sociedad Botánica de México 81:37–50.

[7]

AngelS,BleiAM, CivcoDL,Parent J. 2012. Atlas of urban expansion. Cambridge, MA: Lincoln Institute of Land Policy. 397.

[8]

AntleJM,McGuckin T. 1993. Technological innovation, agricultural productivity, and environmental quality. In: Carlson GA,Zilberman D,Miranowski J eds. Agricultural and environmental resource economics. New York, NY: Oxford University Press. 175–220.

[9]

ApplequistWL,WallaceRS. 2001. Phylogeny of the portulacaceous cohort based on ndhF sequence data. Systematic Botany 26:406–419.

[10]

ArakakiM,Christin PA,NyffelerR,LendelA,EggliU, OgburnRM,Spriggs E,MooreMJ,EdwardsEJ. 2011. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proceedings of the National Academy of Sciences 108:8379–8384.

[11]

AriasS. 1997. ‘Cactaceae’Juss. Mexico: Universidad nacional autónoma de México.

[12]

BakerMA,PinkavaDJ. 1987. A cytological and morphometric analysis of a triploid apomict,Opuntia × kelvinensis (subgenus Cylindropuntia, Cactaceae). Brittonia 39:387–401.

[13]

BakerMA,PinkavaDJ. 1999. A new Arizona hybrid cholla,Opuntia × campii (Cactaceae). Cactus and Succulent Journal 71:320–322.

[14]

BarberaG,CarimiF, IngleseP. 1992. Past and present role of the Indian-fig prickly-pear (Opuntia ficus-indica (L.) Miller, Cactaceae) in the agriculture of Sicily. Economic Botany 46:10–20.

[15]

BarberaG,IngleseP, Pimienta-BarriosE. 1995. Agro-ecology, cultivation and uses of cactus pear (Vol. 132). FAO Rome,Italy.

[16]

BarrientosF. 1965. El nopal y su utilizacion en Mexico. Rev Soc Mex Historia Natural 26:87-94.

[17]

BarthlottW,Burstedde K,GeffertJL,IbischPL,Korotkova N,MiebachA,RafiqpoorMD,SteinA, MutkeJ. 2015. Biogeography and biodiversity of cacti. Schumannia 7:208.

[18]

BehnkeHD. 1994. Sieve-element plastids: Their significance for the evolution and systematics of the order. In: Caryophyllales: Evolution and systematics. Berlin, Heidelberg: Springer. 87–121.

[19]

BensonL. 1982. The cacti of the United States and Canada. StanfordUniv. Press.

[20]

BensonL,Walkington DL. 1965. The southern Californian prickly pears-invasion, adulteration, and trial-by-fire. Annals of the Missouri Botanical Garden 52:262–273.

[21]

BenzBF,SantanaFM, JudithCE,Elizabeth MM,JesusRA,ManuelRA. 1997. The structure and productivity of relict stands of pitaya (Stenocereus queretaroensis; Cactaceae), Jalisco, Mexico. Economic Botany 51:134–143.

[22]

BhattiMW. 2022. Extreme weather: Experts fear 10pc cut in wheat, 30pc mango production [online]. The News International. Available from https://www.thenews.com.pk/print/957036-extreme-weather-experts-fear-10pc-cut-in-wheat-30pc-mango-production [accessed 29 May 2022].

[23]

BishopJ,GarrattMP, NakagawaS. 2022. Animal pollination increases stability of crop yield across spatial scales. Ecology Letters 25:2034–2047.

[24]

BrasilFD. 2019. Brazilian flora 2020 Rio de Janeiro, Brazil: Rio de Janeiro Botanic Garden [online]. Available from http://floradobrasil.jbrj.gov.br [accessed 10 June 2022].

[25]

Bravo-HollisH. 1978a. Las Cactaceas de Mexico. en colaboracion con Sanchez Mejorada H. Mexico: Universidad Nacional Autónoma de México. 1:743.

[26]

Bravo-HollisH. 1978b. Las cactáceas de México: Mexico: Universidad Nacional Autónoma de México. 1.

[27]

BrittonNL,RoseJN. 1963. The Cactaceae: Descriptions and illustrations of plants of the cactus family. Courier Corporation. 3,New York.

[28]

BroomeR,SabirK, CarringtonS. 2007. Plants of the Eastern Caribbean. Online database.

[29]

BrownME,FunkCC. 2008. Food security under climate change. Science 319:580–581.

[30]

BrutschMO,Zimmermann HG. 1995. Control and utilization of wild opuntias. FAO Plant Production and Protection Paper 132:155–166.

[31]

BuxbaumF. 1953. Morphology of cacti: Flower. Abbey Garden Press,Pasadena, California.

[32]

CálixDD. 2004. Geographical distribution of pitahayas (Hylocereus) in Mexico. Cactáceas y Suculentas Mexicanas 49:4–23.

[33]

CallenEO. 1967. Analysis of the Tehuacan coprolites. In: Byers DS ed. The prehistory of the Tehuacan Valley. Austin, TX, USA: Peabody Foundation by the university of Texas Press. 1:261–289.

[34]

CasasA,BarberaG. 2002. Mesoamerican domestication and diffusion. In: Nobel PS eds. Cacti: Biology and uses. Berkeley: University of California Press. 143:62.

[35]

CasasA,Caballero J,MapesC,ZárateS. 1997a. Manejo de la vegetación, domesticación de plantas y origen de la agricultura en Mesoamérica. Botanical Sciences 61:31–47.

[36]

CasasA,Caballero J,Valiente-BanuetA,SorianoJA,Dávila P. 1999. Morphological variation and the process of domestication of Stenocereus stellatus (Cactaceae) in Central Mexico. American Journal of Botany 86:522–533.

[37]

CasasA,Pickersgill B,CaballeroJ,Valiente-BanuetA. 1997b. Ethnobotany and domestication in xoconochtli,Stenocereus stellatus (Cactaceae), in the Tehuacán Valley and la Mixteca Baja, México. Economic Botany 51:279–292.

[38]

CassmanK,WoodS, HassanR. 2005. Cultivated systems. In: Hassan R,Scholes R,Ash N eds. Ecosystems and human well-being: Current state and trends. Washington, DC: Island press. 1:745–794.

[39]

ChandioAA,JiangY, AkramW,Adeel S,IrfanM,JanI. 2021. Addressing the effect of climate change in the framework of financial and technological development on cereal production in Pakistan. Journal of Cleaner Production 288:125637.

[40]

CharlesG. 2014. Cacti and succulents: An illustrated guide to the plants and their cultivation. The Crowood Press,Wiltshire, England.

[41]

ChenJ. 2007. Rapid urbanization in China: A real challenge to soil protection and food security. Catena 69:1–15.

[42]

ChenRS,KatesRW. 1994. World food security: Prospects and trends. Food Policy 19(2):192–208.

[43]

ChenJY,XieFF, CuiYZ,Chen CB,LuWJ,HuXD,HuaQZ, ZhaoJ,Wu ZJ,GaoD,ZhangZK. 2021a. A chromosome-scale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis. Horticulture Research 8:164.

[44]

ChenM,YangH, SongZ,Gu Y,ZhengY,ZhuJ,WangA, FuL. 2021b. Knowledge mapping of Opuntia Milpa Alta since 1998: A scientometric analysis. Phyton 90:1507.

[45]

ClementJS,MabryTJ. 1996. Pigment evolution in the Caryophyllales: A systematic overview. Botanica Acta 109:360–367.

[46]

CoeSD. 1994. America’s first cuisines. In: America’s first cuisines. University of Texas Press,Austin, Texas, USA. https://doi.org/10.7560/711556

[47]

CondeLF. 1975. Anatomical comparisons of five species of Opuntia (Cactaceae). Annals of the Missouri Botanical Garden 62:425–473.

[48]

CookBI,SmerdonJE, SeagerR,Coats S. 2014. Global warming and 21st century drying. Climate Dynamics 43:2607–2627.

[49]

Cota-SánchezJH,Bomfim-Patrício MC. 2010. Seed morphology, polyploidy and the evolutionary history of the epiphytic cactus Rhipsalis baccifera (Cactaceae). Polibotánica 29:107–129.

[50]

CronquistA,Takhtadzhian AL. 1981. An integrated system of classification of flowering plants. New York, NY: Columbia University Press.

[51]

CronquistA,ThorneRF. 1994. Nomenclatural and taxonomic history. In: Behnke HD,Mabry TJ eds. Caryophyllales: Evolution and systematics. Berlin, Heidelberg: Springer. 5–25.

[52]

CuénoudP,Savolainen V,ChatrouLW,PowellM,GrayerRJ, ChaseMW. 2002. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL,atpB, and matK DNA sequences. American Journal of Botany 89:132–144.

[53]

D’AmourCB,WenzL, KalkuhlM,Steckel JC,CreutzigF. 2016. Teleconnected food supply shocks. Environmental Research Letters 11:035007.

[54]

DaiA. 2011. Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change 2:45–65.

[55]

DanaED,SobrinoE, SanzM. 2005a. 89-Four interesting neophytes for the flora of Andalusia. Lagascalia 25:170–175.

[56]

DarS,Arizmendi MDC,Valiente-BanuetA. 2006. Diurnal and nocturnal pollination of Marginatocereus marginatus (Pachycereeae: Cactaceae) in Central Mexico. Annals of Botany 97:423–427.

[57]

De DiosHC. 2005. A new subspecies of Hylocereus undatus (Cactaceae) from southeastern Mexico. Haseltonia 2005:11–17.

[58]

De RiosMD,Cardenas M. 1980. Plant hallucinogens, shamanism and Nazca ceramics. Journal of Ethnopharmacology 2:233–246.

[59]

DonkinRA. 1977. Spanish red: An ethnogeographical study of cochineal and the Opuntia cactus. Transactions of the American Philosophical Society 67:1–84.

[60]

Dos Santos SáWCC,SantosEM,de Oliveira JS,PerazzoAF. 2018. Production of spineless cactus in Brazilian semiarid. In: Edvan RL,Bezerra LR eds. New perspectives in forage crops. London, UK: IntechOpen.

[61]

DownieSR,Katz-Downie DS,ChoKJ. 1997. Relationships in the Caryophyllales as suggested by phylogenetic analyses of partial chloroplast DNA ORF2280 homolog sequences. American Journal of Botany 84:253–273.

[62]

DownieSR,PalmerJD. 1994. A chloroplast DNA phylogeny of the Caryophyllales based on structural and inverted repeat restriction site variation. Systematic Botany 19:236–252.

[63]

EarlHJ,DavisRF. 2003. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agronomy Journal 95:688–696.

[64]

EdwardsEJ,Donoghue MJ. 2006. Pereskia and the origin of the cactus life-form. The American Naturalist 167:777–793.

[65]

EdwardsEJ,OgburnRM. 2012. Angiosperm responses to a low-CO2 world: CAM and C4 photosynthesis as parallel evolutionary trajectories. International Journal of Plant Sciences 173:724–733.

[66]

Estrada-LunaAA,de Jesús Martínez-Hernández J,Torres-TorresME,Chable-MorenoF. 2008. In vitro micropropagation of the ornamental prickly pear cactus Opuntia lanigera Salm–Dyck and effects of sprayed GA3 after transplantation to ex vitro conditions. Scientia Horticulturae 117:378–385.

[67]

FensterCB,Armbruster WS,WilsonP,DudashMR,ThomsonJD. 2004. Pollination syndromes and floral specialization. Annual Review of Ecology, Eevolution, and Systematics 35:375–403.

[68]

FlanneryKV. 1986. Guilá Naquitz. New York: Academic Press.

[69]

FlemingTH,SahleyCT, HollandJN,Nason JD,HamrickJL. 2001. Sonoran Desert columnar cacti and the evolution of generalized pollination systems. Ecological Monographs 71:511–530.

[70]

Fleming TH,Valiente-Banuet A eds. 2002. Columnar cacti and their mutualists: Evolution, ecology, and conservation. Tucson: University of Arizona Press.

[71]

Flora of China Editorial Committee. 2014. Flora of China. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. 13:211.

[72]

GatesDM,Benedict CM. 1963. Convection phenomena from plants in still air. American Journal of Botany 50:563–573.

[73]

GibsonAC,NobelPS. 1986. The cactus primer. Cambridge, MA: Harvard University Press.

[74]

GibsonAC. 1994. Vascular tissues. In: Behnke HD,Bezerra TJ eds. Caryophyllales. Berlin, Heidelberg: Springer. 45–74.

[75]

Global Biodiversity Information Facility. 2022a. Stenocereus pruinosus (Otto) Buxb [online]. Available from https://www.gbif.org/species/3960437 [accessed 22 December 2022].

[76]

Global Biodiversity Information Facility. 2022b. Stenocereus stellatus (Pfeiff.) Riccob [online]. Available from https://www.gbif.org/species/7284680 [accessed 22 December 2022].

[77]

Global Biodiversity Information Facility. 2022c. Stenocereus queretaroensis (F.A.C.Weber) Buxb [online]. Available from https://www.gbif.org/species/3960425 [accessed 22 December 2022].

[78]

GodfrayHCJ,Beddington JR,CruteIR,HaddadL,Lawrence D,MuirJF,PrettyJ,Robinson S,ThomasSM,ToulminC. 2010. Food security: The challenge of feeding 9 billion people. Science 327:812–818.

[79]

GrantV,GrantKA. 1971a. Dynamics of clonal microspecies in cholla cactus. Evolution 25:144–155.

[80]

GrantV,GrantKA. 1971b. Natural hybridization between the cholla cactus species Opuntia spinosior and Opuntia versicolor. Proceedings of the National Academy of Sciences 68:993–1995.

[81]

GrantV,GrantKA. 1979a. Hybridization and variation in the Opuntia phaeacantha group in central Texas. Botanical Gazette 140:208–215.

[82]

GrantV,GrantKA. 1979b. The pollination spectrum in the southwestern American cactus flora. Plant Systematics and Evolution 133:29–37.

[83]

GriffithMP. 2001. A new Chihuahuan Desert prickly pear,Opuntia rooneyi. Cactus and Succulent Journal (US) 73:307–310.

[84]

GriffithMP. 2003. Using molecular evidence to elucidate reticulate evolution in Opuntia (Cactaceae). Madroño 50:162–169.

[85]

GrimmNB,FaethSH, GolubiewskiNE,RedmanCL,WuJ, BaiX,BriggsJM. 2008. Global change and the ecology of cities. Science 319:756–760.

[86]

GuoLW,WuYX, HoHH,SuYY, MaoZC,He PF,HeYQ. 2014. First report of dragon fruit (Hylocereus undatus) anthracnose caused by Colletotrichum truncatum in China. Journal of Phytopathology 162:272–275.

[87]

HaddelandI,HeinkeJ, BiemansH,Eisner S,FlörkeM,HanasakiN,Konzmann M,LudwigF,MasakiY,ScheweJ, StackeT. 2014. Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences of the United States of America 111:3251–3256.

[88]

HarlanJR. 1992. Origins and processes of domestication. In: Chapman GP eds. Grass evolution and domestication. UK: Cambridge University Press. 159:12–15.

[89]

HernandezHM,Barcenas RT. 1995. Endangered cacti in the Chihuahuan Desert: I. Distribution patterns. Conservation Biology 9:1176–1188.

[90]

HershkovitzMA,ZimmerEA. 1997. On the evolutionary origins of the cacti. Taxon 46:217–232.

[91]

HuangB,NobelPS. 1992. Hydraulic conductivity and anatomy for lateral roots of Agave deserti during root growth and drought-induced abscission. Journal of Experimental Botany 43:1441–1449.

[92]

HuangB,NobelPS. 1993. Hydraulic conductivity and anatomy along lateral roots of cacti: Changes with soil water status. New Phytologist 123:499–507.

[93]

HuntDR,TaylorNP, CharlesG. 2006. The new cactus lexicon. Port: DH Books.

[94]

Idell A ed. 1957. The Bernal Diaz chronicles: The true story of the conquest of Mexico. Doubleday, New York.

[95]

IslamM,RazzaqA, HassanS,Qamar IA,RischkowskyB,IbrahimMNM,Louhaichi M. 2017. Assessment of different supplemental feeding strategies including cactus (Opuntia ficus-indica) to enhance sheep productivity in Chakwal, Pakistan. In: Saenz C. IX International Congress on Cactus Pear and Cochineal: CAM Crops for a Hotter and Drier World, March 26-30, 2017. 1247:117–122.

[96]

IUCN. 2016. The IUCN red list of threatened species [online]. Available from http://www.iucnredlist.org

[97]

Janick J,Paull RE eds. 2008. The encyclopedia of fruit and nuts. CABI International; Walliangford, UK.

[98]

JohnsonSD,SteinerKE. 2000. Generalization versus specialization in plant pollination systems. Trends in Ecology & Evolution 15:140–143.

[99]

JuJ,BaiH, ZhengY,Zhao T,FangR,JiangL. 2012. A multi-structural and multi-functional integrated fog collection system in cactus. Nature Communications 3:1–6.

[100]

KauschW. 1965. Beziehungen zwischen Wurzelwachstum, Transpiration und CO2-Gaswechsel bei einigen Kakteen. Planta 66:229–238.

[101]

KieslingR. 1998. Origen, domesticación y distribución de Opuntia ficus-indica. Journal of the Professional Association for Cactus Development 3:50–59.

[102]

KimK,KimH, Ho ParkS,Joon ,LeeS. 2017. Hydraulic strategy of cactus trichome for absorption and storage of water under arid environment. Frontiers in Plant Science 8:1777.

[103]

KlattBK,Holzschuh A,WestphalC,CloughY,SmitI, PawelzikE,Tscharntke T. 2014. Bee pollination improves crop quality, shelf life and commercial value. Proceedings of the Royal Society B: Biological Sciences 281:20132440.

[104]

KleinAM,Vaissière BE,CaneJH,Steffan-DewenterI,Cunningham SA,KremenC,TscharntkeT. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274:303–313.

[105]

KumaraswamyS,ShettyPK. 2016. Critical abiotic factors affecting implementation of technological innovations in rice and wheat production: A review. Agricultural Reviews 37:268–278.

[106]

Le HouérouHN. 1996. The role of cacti (Opuntia spp.) in erosion control, land reclamation, rehabilitation and agricultural development in the Mediterranean Basin. Journal of Arid Environments 33:135–159.

[107]

Le HouérouHN. 2000. Cacti (Opuntia spp.) As a fodder crop for marginal lands in the Mediterranean Basin. In: Nefzaoui A,Inglese P eds. IV International Congress on Cactus Pear and Cochineal. Leuven, Belgium: International Society for Horticultural Science. 581:21–46.

[108]

LeskC,RowhaniP, RamankuttyN. 2016. Influence of extreme weather disasters on global crop production. Nature 529:84–87.

[109]

LevittJ. 1980. Responses of plants to environmental stress, volume 1: Chilling, freezing, and high temperature stresses. New York: Academic Press.

[110]

LobellDB,Schlenker W,Costa-RobertsJ. 2011. Climate trends and global crop production since 1980. Science 333:616–620.

[111]

LocatelliE,MachadoIC, MedeirosP. 1997. Floral biology and bat pollination in Pilosocereus catingicola (Cactaceae) in northeastern Brazil. Bradleya 1997:28–34.

[112]

LocatelliE,MachadoICS. 1999a. Comparative study of the floral biology in two ornithophilous species of Cactaceae: Melocactus zehntneri and Opuntia palmadora. Bradleya 1999:75–85.

[113]

LocatelliE,MachadoICS. 1999b. Floral biology of Cereus fernambucensis: A sphingophilous cactus of restinga. Bradleya 1999:86–94.

[114]

LopezFB,NobelPS. 1991. Root hydraulic conductivity of two cactus species in relation to root age, temperature, and soil water status. Journal of Experimental Botany 42:143–149.

[115]

LunaC,DelCC. 1999. Etnobotánica de la pitaya mixteca (Pachycereae). Ph.D. Dissertation. México: Colegio de Postgraduados.

[116]

MacDougalDT,WorkingEB. 1921. Another high-temperature record for growth and endurance. Science 54:152–153.

[117]

MacKeeHS. 1994. Catalogue des plantes introduites et cultivées en Nouvelle-Calédonie. Paris: Museum national d’histoire naturelle, Laboratoire de phanerogamie.

[118]

MacNeishRS. 1967. A summary of the subsistence. In: Byers DS eds. The prehistory of the Tehuacan Valley. Austin, TX, USA: Peabody Foundation by the University of Texas Press. 1:290–309.

[119]

MajureLC,PuenteR, GriffithMP,Judd WS,SoltisPS,SoltisDE. 2012. Phylogeny of Opuntia ss (Cactaceae): Clade delineation, geographic origins, and reticulate evolution. American Journal of Botany 99:847–864.

[120]

MandujanoMDC,Montaña C,EguiarteLE. 1996. Reproductive ecology and inbreeding depression in Opuntia rastrera (Cactaceae) in the Chihuahuan Desert: Why are sexually derived recruitments so rare? American Journal of Botany 83:63–70.

[121]

ManhartJR,RettigJH. 1994. Gene sequence data. In: Behnke HD,Bezerra TJ eds. Caryophyllales. Berlin, Heidelberg: Springer. 235–246.

[122]

MannME,ZhangZ, RutherfordS,Bradley RS,HughesMK,ShindellD,AmmannC, FaluvegiG,Ni F. 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval climate anomaly. Science 326:1256–1260.

[123]

MartinsC,Oliveira R,Mendonca FilhoCV,LopesLT,Silveira RA,de SilvaJAP,AguiarLM,Antonini Y. 2016. Reproductive biology of Cipocereus minensis (Cactaceae)—A columnar cactus endemic to rupestrian fields of a Neotropical savannah. Flora-Morphology, Distribution, Functional Ecology of Plants 218:62–67.

[124]

MausethJD,PlemonsBJ. 1995. Developmentally variable, polymorphic woods in cacti. American Journal of Botany 82:1199–1206.

[125]

MausethJD,Plemons-Rodriguez BJ. 1997. Presence of paratracheal water storage tissue does not alter vessel characters in cactus wood. American Journal of Botany 84:815–822.

[126]

MausethJD,Plemons-Rodriguez BJ. 1998. Evolution of extreme xeromorphic characters in wood: A study of nine evolutionary lines in Cactaceae. American Journal of Botany 85:209–218.

[127]

MausethJD,Stone-Palmquist ME. 2001. Root wood differs strongly from shoot wood within individual plants of many Cactaceae. International Journal of Plant Sciences 162:767–776.

[128]

MausethJD. 1990. Continental drift, climate and the evolution of cacti. Cactus and Succulent Journal 62:302–308.

[129]

MausethJD. 1995. Ontogenetic mechanisms and the evolution of Cactaceae. Plant Biosystem 129:429–435.

[130]

MertenS. 2003. A review of Hylocereus production in the United States. Journal of Professional Association for Cactus Development 5:98–105.

[131]

MizrahiY,NerdA, NobelPS. 2010. Cacti as crops. Horticultural Reviews 18:291–319.

[132]

MortonJF. 1987. Fruits of warm climates. Miami, USA: JF Morton.

[133]

MortonJF. 2007. The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Sciences of the United States of America 104:19680–19685.

[134]

NassarJM,Ramírez N,LampoM,GonzálezJA,Casado R,NavaF. 2007. Reproductive biology and mating system estimates of two Andean melocacti,Melocactus schatzlii and M. andinus (Cactaceae). Annals of Botany 99:29–38.

[135]

NerdA,MizrahiY. 2010. Reproductive biology of cactus fruit crops. Horticultural Reviews 18:321–346.

[136]

NerdA,SitritY, KaushikRA,Mizrahi Y. 2002a. High summer temperatures inhibit flowering in vine pitaya crops (Hylocereus spp.). Scientia Horticulturae 96:343–350.

[137]

NerdA,Tel-ZurN, MizrahiY. 2002b. Fruits of vine and columnar cacti. In: Nobel PS. Cacti: biology and uses. Berkeley and Los Angeles, California: University of California Press. 185–197.

[138]

NobelPS,BobichEG. 2002. Environmental biology. In: Nobel PS eds. Cacti: Biology and uses. Berkeley and Los Angeles, California: University of California Press. 57–74.

[139]

NobelPS. 1978. Surface temperatures of cacti—Influences of environmental and morphological factors. Ecology 59:986–995.

[140]

NobelPS. 1980. Morphology, surface temperatures, and northern limits of columnar cacti in the Sonoran Desert. Ecology 61:1–7.

[141]

NobelPS. 2003. Environmental biology of agaves and cacti. Cambridge: Cambridge University Press.

[142]

Nobel PS ed. 2002. Cacti: Biology and uses. Berkeley: University of California Press.

[143]

NorthGB,MooreTL, NobelPS. 1995. Cladode development for Opuntia ficus-indica (Cactaceae) under current and doubled CO2 concentrations. American Journal of Botany 82:159–166.

[144]

NorthGB,NobelPS. 1992. Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica. New Phytologist 120:9–19.

[145]

NyffelerR,EggliU. 2010. An up-to-date familial and suprafamilial classification of succulent plants. Bradleya 2010:125–144.

[146]

OldfieldS. 1997. Cactus and succulent plants: Status survey and conservation action plan. Gland: International Union for Conservation of Nature and Natural Resources (IUCN).

[147]

OrcuttDM,NilsenET. 2000. Physiology of plants under stress: Soil and biotic factors. New York,John Wiley & Sons. 2.

[148]

Ortiz-HernandezHYD. 1999. Pitahaya: un nuevo cultivo para México. México DF: Ed. Limusa-Grupo Noriega Editores.

[149]

OviedoP,HerreraO, CaluffMG. 2012. National list of invasive and potentially invasive plants in the Republic of Cuba-2011. Bissea: Boletín sobre Conservación de Plantas del Jardín Botánico Nacional de Cuba 6:22–96.

[150]

ParryMAJL,LeaPJ. 2009. Food security and drought. Annals of Applied Biology 155:299–300.

[151]

PasiecznikN. 2022. Opuntia ficus-indica (prickly pear). CABI Compendium, CABI International.

[152]

Patiño-LópezV,Bravo-AvilezD,Vargas-Mendoza CF,BlancasJ,Rendón-AguilarB. 2022. Evolution under domestication of correlated characters in populations of Stenocereus stellatus (Pfeiff.) Riccob., under different forms of management in central Mexico: Genetic diversity, damage, and defense mechanisms. Genetic Resources and Crop Evolution 69:601–618.

[153]

Pérez-GarcíaEA,MeaveJ,Gallardo C. 2001. Vegetación y flora de la región de Nizanda, Istmo de Tehuantepec, Oaxaca, México. Acta Botanica Mexicana 56:19–88.

[154]

Pimienta-BarriosE,Loera-Quezada M,López-AmezcuaLL. 1992. Estudio anatómico comparativo en morfoespecies del subgénero Opuntia. In: Actas II Congreso Internacional de Tuna y Cochinilla, Santiago de Chile. 30–39.

[155]

Pimienta-BarriosE,Nobel PS. 1994. Pitaya (Stenocereus spp., Cactaceae): An ancient and modern fruit crop of Mexico. Economic Botany 48:76–83.

[156]

PinkavaDJ. 2002. On the evolution of the North American Opuntioideae. In: Hunt D,Taylor N. Studies in the Opuntioideae. London: DH Books. 78–99.

[157]

PlieningerT,BielingC, FagerholmN,Byg A,HartelT,HurleyP,López-Santiago CA,NagabhatlaN,Oteros-RozasE,RaymondCM, Van der HorstD. 2015. The role of cultural ecosystem services in landscape management and planning. Current Opinion in Environmental Sustainability 14:28–33.

[158]

PottsSG,Imperatriz-Fonseca V,NgoHT,AizenMA,Biesmeijer JC,BreezeTD,DicksLV,Garibaldi LA,HillR,SetteleJ,Vanbergen AJ. 2016. Safeguarding pollinators and their values to human well-being. Nature 540:220–229.

[159]

ProctorM,YeoP, LackA. 1996. The natural history of pollination. New York: HarperCollins Publishers.

[160]

PumaMJ,BoseS, ChonSY,Cook BI. 2015. Assessing the evolving fragility of the global food system. Environmental Research Letters 10:024007.

[161]

RagusoRA,HenzelC, BuchmannSL,Nabhan GP. 2003. Trumpet flowers of the Sonoran Desert: Floral biology of Peniocereus cacti and sacred Datura. International Journal of Plant Sciences 164:877–892.

[162]

RebmanJP,PinkavaDJ. 2001. Opuntia cacti of North America: An overview. In: Florida entomologist. USA: Florida Entomology Society. 84:474–483.

[163]

ReidsmaP,EwertF, LansinkAO,Leemans R. 2010. Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. European Journal of Agronomy 32:91–102.

[164]

RettigJH,WilsonHD, ManhartJR. 1992. Phylogeny of the Caryophyllales-gene sequence data. Taxon 41:201–209.

[165]

Reyes-AgüeroJA,Valiente-Banuet A. 2006. Reproductive biology of Opuntia: A review. Journal of Arid Environments 64:549–585.

[166]

RohdeR,MullerRA, JacobsenR,Muller E,PerlmutterS,RosenfeldA,WurteleJ, GroomD,Wickham C. 2013. A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinfor Geostat: An Overview 1:1.

[167]

Roig-AlsinaA,Schlumpberger BO. 2008. The cactus-specialist bees of the genus Brachyglossula Hedicke (Hymenoptera: Colletidae): Notes on host associations and description of a new species. Journal of the Kansas Entomological Society 81:84–91.

[168]

Rojas-SandovalJ,PraciakA. 2022. Hylocereus undatus (dragon fruit). CABI Compendium, CABI International.

[169]

RussellCE,FelkerP. 1987. The prickly-pears (Opuntia spp., Cactaceae): A source of human and animal food in semiarid regions. Economic Botany 41:433–445.

[170]

SajevaM,MausethJD. 1991. Leaf-like structure in the photosynthetic, succulent stems of cacti. Annals of Botany 68:405–411.

[171]

SangheraGS,WaniSH, HussainW,Singh NB. 2011. Engineering cold stress tolerance in crop plants. Current Genomics 12:30.

[172]

SchlindweinC,Wittmann D. 1997. Stamen movements in flowers of Opuntia (Cactaceae) favour oligolectic pollinators. Plant Systematics and Evolution 204:179–193.

[173]

SchlumpbergerBO,BadanoEI. 2005. Diversity of floral visitors to Echinopsis atacamensis subsp. pasacana (Cactaceae). Haseltonia 2005:18–26.

[174]

SchlumpbergerBO,CocucciAA, MoréM,SérsicAN,RagusoRA. 2009. Extreme variation in floral characters and its consequences for pollinator attraction among populations of an Andean cactus. Annals of Botany 103:1489–1500.

[175]

SchlumpbergerBO,RagusoRA. 2008. Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoth attraction. Oikos 117:801–814.

[176]

SchmidhuberJ,Tubiello FN. 2007. Global food security under climate change. Proceedings of the National Academy of Sciences 104:19703–19708.

[177]

SchuchUK,KellyJJ. 2008. Salinity tolerance of cacti and succulents. Tucson, AZ: College of Agriculture and Life Sciences, University of Arizona. Turfgrass, Landscape and Urban IPM Research Summary.

[178]

SchultzB. 2018. Contribution of water management and flood protection to food security and sustainable development of coastal and deltaic areas. Irrigation and Drainage 67:123–135.

[179]

ScobellSA,ScottPE. 2002. Visitors and floral traits of a hummingbird-adapted cactus (Echinocereus coccineus) show only minor variation along an elevational gradient. The American Midland Naturalist 147:1–15.

[180]

ScreenJA,Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337.

[181]

SeebensH,Blackburn TM,DyerEE,GenovesiP,HulmePE, JeschkeJM,Pagad S,PyšekP,WinterM,Arianoutsou M,BacherS. 2017. No saturation in the accumulation of alien species worldwide. Nature Communications 8:1–9.

[182]

SejuroO. 1990. Plantas medicinales utilizadas por los curanderos de Nasca. Boletín de Investigación en Tecnologías Nativas 5:3.

[183]

SetoKC,Güneralp B,HutyraLR. 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences 109:16083–16088.

[184]

SetoKC,Sánchez-Rodríguez R,FragkiasM. 2010. The new geography of contemporary urbanization and the environment. Annual Review of Environment and Resources 35:167–194.

[185]

ShawJD. 1945. World food security. A History since, 7. New York: Palmgrave Macmillan.

[186]

ShrivastavaP,KumarR. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22:123–131.

[187]

SidhuBS. 2022. Likely impacts of the 2022 heatwave on India’s wheat production. Environmental Research Letters 18.10

[188]

SilvaWR,SazimaM. 1995. Hawkmoth pollination in Cereus peruvianus, a columnar cactus from southeastern Brazil. Flora 190:339–343.

[189]

SimpsonBB,NeffJL. 1987. Pollination ecology in the Southwest. Aliso: A Journal of Systematic and Floristic Botany 11:417–440.

[190]

SmithCE. 1967. Plant remains. In: Byers DS ed. The prehistory of the Tehuacan Valley. Austin, TX, USA: Peabody Foundation bythe University of Texas Press. 1:220–255.

[191]

SmithSD,Didden-Zopfy B,NobelPS. 1984. High-temperature responses of North American cacti. Ecology 65:643–651.

[192]

SortibránL,Tinoco-Ojanguren C,TerrazasT,Valiente-BanuetA. 2005. Does cladode inclination restrict microhabitat distribution for Opuntia puberula (Cactaceae)? American Journal of Botany 92:700–708.

[193]

SpaceJC,Waterhouse BM,NewfieldM,BullC. 2004. Report to the Government of Niue and the United Nations Development Programme: Invasive plant species on Niue following cyclone Heta. United Nations Development Programme.

[194]

StedutoP,SchultzB, UnverO,Ota S,ValleeD,KulkarniS,Johns Garcia MD. 2018. Food security by optimal use of water: Synthesis of the 6th and 7th world water forums and developments since then. Irrigation and Drainage 67:327–344.

[195]

Stone-PalmquistME,Mauseth JD. 2002. The structure of enlarged storage roots in cacti. International Journal of Plant Sciences 163:89–98.

[196]

TaiAP,MartinMV, HealdCL. 2014. Threat to future global food security from climate change and ozone air pollution. Nature Climate Change 4:817–821.

[197]

TansP,KeelingR. 2013. Trends in atmospheric CO2 at Mauna Loa. La Jolla, CA, Hawaii: Earth System Research Laboratory, National Oceanic and Atmospheric Administration and Scripps Institution of Oceanography.

[198]

Tausz-PoschS,NortonRM, SeneweeraS,Fitzgerald GJ,TauszM. 2013. Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO2 world? A FACE study. Physiologia Plantarum 148:232–245.

[199]

TaylorNP,ZappiDC. 2004. Cacti of eastern Brazil. Kew: Royal Botanic Gardens.

[200]

The Angiosperm Phylogeny Group. 1998. An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden 85:531–553.

[201]

TheboAL,Drechsel P,LambinEF. 2014. Global assessment of urban and peri-urban agriculture: Irrigated and rainfed croplands. Environmental Research Letters 9:114002.

[202]

ThomashowMF. 1999. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Biology 50:571–599.

[203]

ThorntonPK,Ericksen PJ,HerreroM,ChallinorAJ. 2014. Climate variability and vulnerability to climate change: A review. Global Change Biology 20:3313–3328.

[204]

TilmanD,BalzerC, HillJ,Befort BL,2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences 108:20260–20264.

[205]

TschapkaM,von Helversen O,BarthlottW. 1999. Bat pollination of Weberocereus tunilla, an epiphytic rain forest cactus with functional flagelliflory. Plant Biology 1:554–559.

[206]

TurnerBL. 1972. Chemosystematic data: Their use in the study of disjunctions. Annals of the Missouri Botanical Garden 59:152–164.

[207]

Valiente-BanuetA,Arizmendi MDC,Rojas-MartínezA, Domínguez-CansecoL. 1996. Ecological relationships between columnar cacti and nectar-feeding bats in Mexico. Journal of Tropical Ecology 12:103–119.

[208]

VermeulenSJ,Aggarwal PK,AinslieA,AngeloneC,Campbell BM,ChallinorAJ,HansenJW,IngramJS, JarvisA,Kristjanson P,LauC. 2012a. Options for support to agriculture and food security under climate change. Environmental Science & Policy 15(1):136–144.

[209]

VermeulenSJ,Campbell BM,IngramJS. 2012b. Climate change and food systems. Annual Review of Environment and Resources 37:195–222.

[210]

WallaceRC. 1995a. Molecular evidence for the systematic placement of Echinocereus pensilis (K. Brandegee) J Purpus (Cactaceae). Haseltonia 3:71–76.

[211]

WallaceRS,CotaJH. 1996. An intron loss in the chloroplast generpoC1 supports a monophyletic origin for the subfamily Cactoideae of the Cactaceae. Current Genetics 29:275–281.

[212]

WallaceRS,GibsonAC. 2002. Evolution and systematics. In: Nobel PS ed. Cacti: Biology and uses. Berkeley: University of California Press. 1–21.

[213]

WallaceRS. 1995b. Molecular systematic study of the Cactaceae: Using chloroplast DNA variation to elucidate cactus phylogeny. Bradleya 1995:1–12.

[214]

WallaceRS. 1997. The phylogenetic position of Mediocactus hahnianus. Cactaceae Consensus Init 4:11–12.

[215]

WalterHE. 2010. Floral biology of Echinopsis chiloensis ssp. chiloensis (Cactaceae): Evidence for a mixed pollination syndrome. Flora-Morphology, Distribution, Functional Ecology of Plants 205:757–763.

[216]

WaltersM,Figueiredo E,ZimmermannHG,MashopeBK. 2011. Naturalised and invasive succulents of southern Africa. Beljium: Abc Taxa.

[217]

WassmannR,Jagadish SVK,HeuerS,IsmailA,RedonaE, SerrajR,Singh RK,HowellG,PathakH,Sumfleth K. 2009. Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy 101:59–122.

[218]

WheelerT,Von Braun J. 2013. Climate change impacts on global food security. Science 341:508–513.

[219]

WiebeK,Robinson S,CattaneoA. 2019. Climate change, agriculture and food security: Impacts and the potential for adaptation and mitigation. In: Campanhola C,Pandey S eds. Sustainable food and agriculture. Academic Press. 55–74.

[220]

WittA. 2017. Guide to the naturalized and invasive plants of Laikipia. Nairobi, Kenya: CABI.

[221]

YadavSK. 2010. Cold stress tolerance mechanisms in plants. A review. Agronomy for sustainable development 30:515–527. https://www.cabdirect.org/cabdirect/abstract/20177200286

[222]

YetmanD. 2007. The great cacti: Ethnobotany & biogeography. Tuscon: University of Arizona Press.

[223]

ZamanQU,HussainMA, KhanLU,Cui JP,HuiL,KhanD,LvW, WangHF. 2023. Genome-wide identification and expression pattern of the GRAS gene family in Pitaya (Selenicereus undatus L.). Biology 12:11.

[224]

ZasadaI,BergesR, HilgendorfJ,Piorr A. 2013. Horsekeeping and the peri-urban development in the Berlin Metropolitan Region. Journal of Land Use Science 8:199–214.

[225]

ZhengF,ChenLW, MaR,XuG, DingXF,Zheng FQ,XieCP. 2018. First report of southern blight in pitaya (Hylocereus undatus) caused by Sclerotium rolfsii in China. Plant Disease 102:441.

RIGHTS & PERMISSIONS

2023 Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/