Seeking the identity of an enigmatic moss by embracing phylogenomics

Pablo Aguado-Ramsay , Tamara Villaverde , Ricardo Garilleti , J. Gordon Burleigh , Stuart F. McDaniel , Maren Flagmeier , Jurgen Nieuwkoop , Arno van der Pluijm , Florian Hans , Francisco Lara , Isabel Draper

Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (5) : 979 -992.

PDF
Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (5) : 979 -992. DOI: 10.1111/jse.13040
Research Article

Seeking the identity of an enigmatic moss by embracing phylogenomics

Author information +
History +
PDF

Abstract

Currently, a wide range of genomic techniques is available at a relatively affordable price. However, not all of them have been equally explored in bryophyte systematics. In the present study, we apply next-generation sequencing to identify samples that cannot be assigned to a taxon by morphological analysis or by Sanger sequencing methods. These samples correspond to a moss with an enigmatic morphology that has been found throughout Western Europe over the last two decades. They exhibit several anomalies in the gametophyte and, on the rare occasions that they appear, also in the sporophyte. The most significant alterations are related to the shape of the leaves. Morphologically, all specimens correspond to mosses of the genus Lewinskya, and the least modified samples are potentially attributable to the Lewinskya affinis complex. Specimen identifications were first attempted using up to seven molecular markers with no satisfactory results. Thus, we employed data generated from targeted enrichment using the GoFlag 408 flagellate land plant probe set to elucidate their identity. Our results demonstrate that all the enigmatic samples correspond to a single species,L. affinis s.str. This approach provided the necessary resolution to confidently identify these challenging samples and may be a powerful tool for similar cases, especially in bryophytes.

Keywords

Bryophyta / GoFlag 408 / Lewinskya affinis / Orthotrichaceae / targeted enrichment / taxonomy

Cite this article

Download citation ▾
Pablo Aguado-Ramsay, Tamara Villaverde, Ricardo Garilleti, J. Gordon Burleigh, Stuart F. McDaniel, Maren Flagmeier, Jurgen Nieuwkoop, Arno van der Pluijm, Florian Hans, Francisco Lara, Isabel Draper. Seeking the identity of an enigmatic moss by embracing phylogenomics. Journal of Systematics and Evolution, 2024, 62(5): 979-992 DOI:10.1111/jse.13040

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguado-RamsayP,DraperI, GarilletiR,Flagmeier M,LaraF. 2022. Codonoblepharonteae, a new major lineage among Orthotrichoideae (Orthotrichaceae, Bryophyta). Plants 11:3557.

[2]

AndoH,HiguchiM. 1994. Hypnum heseleri sp.nov. (Hypnaceae), a curious new moss from Europe. The Journal of the Hattori Botanical Laboratory 75:97–105.

[3]

BakalinVA,VilnetAA, MamontovYS,Schäfer-Verwimp A,MaltsevaYD,KlimovaKG,NguyenVS, ChoiSS. 2022. Stolonicaulon: A section-puzzle within Marsupella (Gymnomitriaceae, Marchantiophyta). Plants 11:1596.

[4]

BechtelerJ,Peñaloza-Bojacá G,BellD,BurleighJG,McDaniel SF,DavisEC,SessaEB,BippusA, CargillCC,Chantanaorrapint S,DraperI,EndaraL,ForrestLL, GarilletiR,Graham SW,HuttunenS,Jauregui LazoJ,LaraF, LarraínJ,LewisLR,LongDG, QuandtD,Renzaglia K,Schäfer-VerwimpA, LeeGE,Sierra AM,von KonratM,ZartmanCE,PereiraMR, GoffinetB,Villarreal JC. 2023. Comprehensive phylogenomic time tree of bryophytes reveals deep relationships and uncovers gene incongruences in the last 500 million years of diversification. American Journal of Botany 110(10):e16249.

[5]

BellAD. 1991. Plant form. An illustrated guide to flowering plant morphology. Oxford: Oxford University Press.

[6]

BiK,Linderoth T,VanderpoolD,GoodJM,NielsenR, MoritzC. 2013. Unlocking the vault: Next-generation museum population genomics. Molecular Ecology 22:6018–6032.

[7]

BlaimerBB,LloydMW, GuilloryWX,Brady SG. 2016. Sequence capture and phylogenetic utility of genomic ultraconserved elements obtained from pinned insect specimens. PLoS One 11:e0161531.

[8]

BlattnerFR. 2016. TOPO6: A nuclear single-copy gene for plant phylogenetic inference. Plant Systematics and Evolution 302:239–244.

[9]

BorowiecML. 2016. AMAS: A fast tool for alignment manipulation and computing of summary statistics. PeerJ 4:e1660.

[10]

BrakefieldPM. 2006. Evo-devo and constraints on selection. Trends in Ecology & Evolution 21:362–368.

[11]

BravoGA,Antonelli A,BaconCD,BartoszekK,BlomMPK, HuynhS,Jones G,KnowlesLL,LamichhaneyS,Marcussen T,MorlonH,NakhlehLK,OxelmanB, PfeilB,Schliep A,WahlbergN,WerneckFP,Wiedenhoeft J,Willows-MunroS,EdwardsSV. 2019. Embracing heterogeneity: Coalescing the Tree of Life and the future of phylogenomics. PeerJ 7:e6399.

[12]

BreinholtJW,CareySB, TileyGP,Davis EC,EndaraL,McDanielSF,NevesLG, SessaEB,von Konrat M,ChantanaorrapintS,FawcettS,Ickert-Bond SM,LabiakPH,LarraínJ,LehnertM, LewisLR,Nagalingum NS,PatelN,RensingSA,TestoW, VascoA,Villarreal JC,WilliamsEW,BurleighJG. 2021. A target enrichment probe set for resolving the flagellate land plant tree of life. Applications in Plant Sciences 9:e11406.

[13]

BrewerGE,Clarkson JJ,MaurinO,ZuntiniAR,BarberV, BellotS,Biggs N,CowanRS,DaviesNMJ,Dodsworth S,EdwardsSL,EiserhardtWL,Epitawalage N,FrisbyS,GrallA,KerseyPJ, PokornyL,Leitch IJ,ForestF,BakerWJ. 2019. Factors affecting targeted sequencing of 353 nuclear genes from herbarium specimens spanning the diversity of Angiosperms. Frontiers in Plant Science 10:1102.

[14]

JCBrinda,JJ Atwood eds. 2023. The Bryophyte Nomenclator. https://www.bryonames.org/

[15]

BudkeJM,PatelNR, GoFlagConsortium,WienholdMD,Bruggeman-Nannenga MA. 2022. Exploring morphological evolution in relation to habitat moisture in the moss genus Fissidens using molecular data generated from herbarium specimens. Journal of Systematics and Evolution 61:868–889.

[16]

BuryováB,ShawAJ. 2005. Phenotypic plasticity in Philonotis fontana (Bryopsida: Bartramiaceae). Journal of Bryology 27:13–22.

[17]

CarrollSB. 2008. Evo-Devo and an expanding evolutionary synthesis: A genetic theory of Morphological evolution. Cell 134:25–36.

[18]

CastresanaJ. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17:540–552.

[19]

CezónK,Muñoz J,HedenäsL,HuttunenS. 2010. Rhynchostegium confusum, a new species from the Iberian Peninsula and its relation to R. confertum based on morphological and molecular data. Journal of Bryology 32:1–8.

[20]

ChernomorO,von Haeseler A,MinhBQ. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65:997–1008.

[21]

DavidsonEH. 2001. Genomic regulatory systems. San Diego, CA: Academic Press.

[22]

DodsworthS. 2015. Genome skimming for next-generation biodiversity analysis. Trends in Plant Science 20:525–527.

[23]

DodsworthS,PokornyL, JohnsonMG,Kim JT,MaurinO,WickettNJ,ForestF, BakerWJ. 2019. Hyb-seq for flowering plant systematics. Trends in Plant Science 24:887–891.

[24]

DraperI,Garilleti R,CallejaJA,FlagmeierM,Mazimpaka V,VigalondoB,LaraF. 2021. Insights into the evolutionary history of the subfamily Orthotrichoideae (Orthotrichaceae, Bryophyta): New and former supra-specific taxa so far obscured by prevailing homoplasy. Frontiers in Plant Science 12:629035.

[25]

DraperI,Hedenäs L,GrimmGW. 2007. Molecular and morphological incongruence in European species of Isothecium (Bryophyta). Molecular Phylogenetics and Evolution 42:700–716.

[26]

DraperI,Hedenäs L,StechM,PatiñoJ,WernerO, González-ManceboJM,Sim-SimM,LopesT, RosRM. 2015. How many species of Isothecium (Lembophyllaceae, Bryophyta) are there in Macaronesia? A survey using integrative taxonomy. Botanical Journal of the Linnean Society 177:418–438.

[27]

DraperI,Villaverde T,GarilletiR,BurleighJG,McDaniel SF,MazimpakaV,CallejaJA,LaraF. 2022. An NGS-based phylogeny of Orthotricheae (Orthotrichaceae, Bryophyta) with the proposal of the new genus Rehubryum from Zealandia. Frontiers in Plant Science 13:882960.

[28]

EcksteinJ,Garilleti R,LaraF. 2018. Lewinskya transcaucasica (Orthotrichaceae, Bryopsida) sp. nov. A contribution to the bryophyte flora of Georgia. Journal of Bryology 40:31–38.

[29]

EnrothJ,OlssonS, HeS,ShevockJR, QuandtD. 2010. When morphology and molecules tell us different stories, part 2: Pinnatella homaliadelphoides (Neckeraceae), a new moss species from China and India. Bryophyte Diversity and Evolution 31:67–75.

[30]

EricksonDL,SpougeJ, ReschA,Weigt LA,KressJW. 2008. DNA barcoding in land plants: Developing standards to quantify and maximize success. Taxon 57:1304–1316.

[31]

FairclothBC,McCormack JE,CrawfordNG,HarveyMG,Brumfield RT,GlennTC. 2012. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology 61:717–726.

[32]

FawcettS,SmithAR, SundueM,Burleigh JG,SessaE,KuoL-Y,ChenC-W, TestoWL,Kessler M,BarringtonDS. 2021. A global phylogenomic study of the Thelypteridaceae. Systematic Botany 46:891–915.

[33]

FolkRA,KatesHR, LaFranceR,Soltis DE,SoltisPS,GuralnickRP. 2021. High-throughput methods for efficiently building massive phylogenies from natural history collections. Applications in Plant Sciences 9:e11410.

[34]

ForrestLL,HartML, HughesM,Wilson HP,ChungK-F,TsengY-H,KidnerCA. 2019. The limits of Hyb-Seq for herbarium specimens: Impact of preservation techniques. Frontiers in Ecology and Evolution 7:439.

[35]

FreyW,StechM. 2009. Division of Bryophyta Schimp. (Musci, Mosses). In: Frey W ed. Syllabus of plant families. Adolf Engler’s Syllabus der Pflanzenfamilien. Berlin: Gebrüder Borntraeger. 116–257.

[36]

GarilletiR,Mazimpaka V,LaraF. 2015. Ulota larrainii (Orthotrichoideae, Orthotrichaceae, Bryophyta) a new species from Chile, with comments on the worldwide diversification of the genus. Phytotaxa 217:133–144.

[37]

GoffinetB,ShawA, CoxCJ,Wickett N,BolesS. 2004. Phylogenetic inferences in the Orthotrichoideae (Orthotrichaceae: Bryophyta) based on variation in four loci from all genomes. Monographs in Systematic Botany from the Missouri Botanical Garden 98:270–289.

[38]

GoffinetB,VittDH. 1998. Revised generic classification of the Orthotrichaceae based on a molecular phylogeny and comparative morphology. In: Bates JW,Ashton NW,Suckett JG eds. Bryology for the twenty-first century. Leeds: Maney Publishing and the British Bryological Society. 143–160.

[39]

GuschanskiK,KrauseJ, SawyerS,Valente LM,BaileyS,FinstermeierK,SabinR, GilissenE,Sonet G,NagyZT,LengletG,MayerF, SavolainenV. 2013. Next-generation museomics disentangles one of the largest primate radiations. Systematic Biology 62:539–554.

[40]

GustavssonS,LebrunA-S, NordénK,ChaumontF,Johanson U. 2005. A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels. Plant Physiology 139:287–295.

[41]

HartML,ForrestLL, NichollsJA,Kidner CA. 2016. Retrieval of hundreds of nuclear loci from herbarium specimens. Taxon 65:1081–1092.

[42]

HasselK,Pedersen B,SöderströmL. 2005. Changes in life-history traits in an expanding moss species: Phenotypic plasticity or genetic differentiation? A reciprocal transplantation experiment with Pogonatum dentatum. Ecography 28:71–80.

[43]

HeddersonTA,NowellTL. 2006. Phylogeography of Homalothecium sericeum (Hedw.) Br. Eur.; toward a reconstruction of glacial survival and postglacial migration. Journal of Bryology 28:283–292.

[44]

HedenäsL,DraperI, MilyutinaI,Ignatov MS. 2012. ITS and morphology tell different histories about the species of the Sciuro-hypnum reflexum complex (Brachytheciaceae, Bryophyta). The Bryologist 115:153–172.

[45]

HedenäsL,Eldenäs P. 2008. Relationships in Scorpidium (Calliergonaceae, Bryophyta), especially between S. cossonii and S. scorpioides. Taxon 57:121–130.

[46]

HedenäsL,Huttunen S,ShevockJR,NorrisDH. 2009. Homalothecium californicum (Brachytheciaceae), a new endemic species to the California Floristic Province, Pacific Coast of North America. The Bryologist 112:593–604.

[47]

HoangDT,Chernomor O,von HaeselerA,MinhBQ,VinhLS. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35:518–522.

[48]

HodgettsNG,Blockeel TL. 1992. Thamnobryum cataractarum, a new species from Yorkshire, with observations on T. angustifolium and T. fernandesii. Journal of Bryology 17:251–262.

[49]

HodgettsNG,Söderström L,BlockeelTL,CaspariS,IgnatovMS, KonstantinovaNA,LockhartN,PappB, SchröckC,Sim-SimM,BellD, BellNE,Blom HH,Bruggeman-NannengaMA, BruguésM,EnrothJ,Flatberg KI,GarilletiR,HedenäsL,HolyoakDT, HugonnotV,Kariyawasam I,Köckinger H, Kučera J,LaraF,PorleyRD. 2020. An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. Journal of Bryology 42:1–116.

[50]

HortalJ,de Bello F,Diniz-FilhoJAF,LewinsohnTM,LoboJM, LadleRJ. 2015. Seven shortfalls that beset large-scale knowledge of Biodiversity. Annual Review of Ecology, Evolution, and Systematics 46:523–549.

[51]

HuttunenS,IgnatovMS. 2010. Evolution and taxonomy of aquatic species in the genus Rhynchostegium (Brachytheciaceae, Bryophyta). Taxon 59:791–808.

[52]

Jauregui-LazoJ,BrindaJC, ConsortiumG,Mishler BD. 2023. The phylogeny of Syntrichia: An ecologically diverse clade of mosses with an origin in South America. American Journal of Botany 110:e16103.

[53]

JohnsonMG,PokornyL, DodsworthS,Botigué LR,CowanRS,DevaultA,Eiserhardt WL,EpitawalageN,ForestF,KimJT, Leebens-MackJH,LeitchIJ,MaurinO, SoltisDE,Soltis PS,WongGK,BakerWJ,WickettNJ. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology 68:594–606.

[54]

JunierT,ZdobnovEM. 2010. The Newick utilities: High-throughput phylogenetic tree processing in the Unix shell. Bioinformatics 26:1669–1670.

[55]

KadlecM,Bellstedt DU,MaitreNCL,PirieMD. 2017. Targeted NGS for species level phylogenomics: “Made to measure” or “one size fits all”? PeerJ 5:e3569.

[56]

KalyaanamoorthyS,Minh BQ,WongTKF,von HaeselerA,JermiinLS. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14:587–589.

[57]

KaneNC,CronkQ. 2008. Botany without borders: Barcoding in focus. Molecular Ecology 17:5175–5176.

[58]

KapliP,YangZ, TelfordMJ. 2020. Phylogenetic tree building in the genomic age. Nature Reviews Genetics 21:428–444.

[59]

KiebacherT,Köckinger H,KučeraJ. 2022. Adaptive divergence in the neglected alpine moss Lewinskya killiasii (Orthotrichaceae), an example of vicariance on different rock types in bryophytes. Botanical Journal of the Linnean Society 198:456–481.

[60]

KozlovAM,DarribaD, FlouriT,Morel B,StamatakisA. 2019. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35:4453–4455.

[61]

KučeraJ,Kuznetsova OI,ManukjanováA, IgnatovMS. 2019. A phylogenetic revision of the genus Hypnum: Towards completion. Taxon 68:628–660.

[62]

LaraF,DraperI, FlagmeierM,Calleja JA,MazimpakaV,GarilletiR. 2020. Let’s make Pulvigera great again: Re-circumscription of a misunderstood group of Orthotrichaceae that diversified in North America. Botanical Journal of the Linnean Society 193:180–206.

[63]

LaraF,Garilleti R,DraperI,MazimpakaV. 2018. Lewinskya lamyana sp. nov. (Orthotrichaceae, Bryopsida), a distinct moss from an exceptional habitat in the Southern Iberian Peninsula. Cryptogamie, Bryologie 39:259–270.

[64]

LaraF,Garilleti R,GoffinetB,DraperI,MedinaR, VigalondoB,Mazimpaka V. 2016. Lewinskya, a new genus to accommodate the phaneroporous and monoicous taxa of Orthotrichum (Bryophyta, Orthotrichaceae). Cryptogamie, Bryologie 37:361–382.

[65]

LarridonI,Villaverde T,ZuntiniAR,PokornyL,BrewerGE, EpitawalageN,FairlieI,HahnM, KimJ,Maguilla E,MaurinO,XanthosM,HippAL, ForestF,Baker WJ. 2020. Tackling rapid radiations with targeted sequencing. Frontiers in Plant Science 10:1655.

[66]

LewinskyJ. 1993. A synopsis of the genus Orthotrichum Hedw. (Musci, Orthotrichaceae). Bryobrothera 2:1–59.

[67]

LiX,YangY, HenryRJ,Rossetto M,WangY,ChenS. 2015. Plant DNA barcoding: From gene to genome. Biological Reviews 90:157–166.

[68]

Lozano-FernandezJ. 2022. A practical guide to design and assess a phylogenomic study. Genome Biology and Evolution 14: evac119.

[69]

MageeAF,MayMR, MooreBR. 2014. The dawn of open access to phylogenetic data. PLoS One 9:e110268.

[70]

MaltsevaYD,FedosovVE, BakalinVA,Klimova KG,ChoiSS. 2023. One species or two: A puzzling case from Scapaniaceae (Marchantiophyta). Diversity 15:205.

[71]

MarandAP,EvelandAL, KaufmannK,Springer NM. 2023. Cis-regulatory elements in plant development, adaptation, and evolution. Annual Review of Plant Biology 74:111–137.

[72]

McCormackJE,HirdSM, ZellmerAJ,Carstens BC,BrumfieldRT. 2013. Applications of next-generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and Evolution 66:526–538.

[73]

McDanielSF,Von Stackelberg M,RichardtS,QuatranoRS,ReskiR, RensingSA. 2010. The speciation history of the Physcomitrium—Physcomitrella species complex. Evolution 64:217–231.

[74]

McKainMR,JohnsonMG, Uribe-ConversS,EatonD,YangY. 2018. Practical considerations for plant phylogenomics. Applications in Plant Sciences 6:e1038.

[75]

MedinaNG,DraperI, LaraF. 2011. Biogeography of mosses and allies: Does size matter? In: Fontaneto D ed. Biogeography of microscopic organisms. Cambridge: Cambridge University Press. 209–233.

[76]

MedinaR,LaraF, GoffinetB,Garilleti R,MazimpakaV. 2012. Integrative taxonomy successfully resolves the pseudo-cryptic complex of the disjunct epiphytic moss Orthotrichum consimile s.l. (Orthotrichaceae). Taxon 61:1180–1198.

[77]

Mendez-ReneauJ,Burleigh JG,SigelEM. 2023. Target capture methods offer insight into the evolution of rapidly diverged taxa and resolve allopolyploid homeologs in the fern genus Polypodium s.s. Systematic Botany 48:96–109.

[78]

MinhBQ,SchmidtHA, ChernomorO,Schrempf D,WoodhamsMD,von HaeselerA,LanfearR. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37:1530–1534.

[79]

MirarabS. 2023. Species tree estimation using ASTRAL: Practical considerations. In: Knowles LL,Kubatko LS eds. Species tree inference: A guide to methods and applications. Oxford: Princeton University Press. 43–67.

[80]

NatchevaR,Cronberg N. 2004. What do we know about hybridization among bryophytes in nature? Canadian Journal of Botany 82:1687–1704.

[81]

NguyenL-T,SchmidtHA, von HaeselerA,MinhBQ. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268–274.

[82]

Nieto-LugildeM,WernerO, McDanielSF,Koutecký P,KučeraJ,RizkSM,RosRM. 2018a. Peripatric speciation associated with genome expansion and female-biased sex ratios in the moss genus Ceratodon. American Journal of Botany 105:1009–1020.

[83]

Nieto-LugildeM,WernerO, McDanielSF,Ros RM. 2018b. Environmental variation obscures species diversity in southern European populations of the moss genus Ceratodon. Taxon 67:673–692.

[84]

NockCJ,WatersDLE, EdwardsMA,Bowen SG,RiceN,CordeiroGM,HenryRJ. 2011. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnology Journal 9:328–333.

[85]

OchyraR,SchmidtC, BültmannH. 1998. Gradsteinia torrenticola, a new aquatic moss species from Tenerife. Journal of Bryology 20:403–409.

[86]

OchyraR,Vanderpoorten A. 1999. Platyhypnidium mutatum, a mysterious new moss from Germany. Journal of Bryology 21:183–189.

[87]

OlssonS,Buchbender V,EnrothJ,HedenäsL,Huttunen S,QuandtD. 2009. Phylogenetic analyses reveal high levels of polyphyly among pleurocarpous lineages as well as novel clades. The Bryologist 112:447–466.

[88]

OlssonS,EnrothJ, HuttunenS,Quandt D. 2012. Forsstroemia Lindb. (Neckeraceae) revisited. Journal of Bryology 34:114–122.

[89]

ParadisE,SchliepK. 2019. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528.

[90]

ParksM,CronnR, ListonA. 2009. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology 7:84.

[91]

R Core Team. 2023. R: A language and environment for statistical computing.

[92]

RiddleBR,LadleRJ, LourieSA,Whittaker RJ. 2011. Basic biogeography: Estimating biodiversity and mapping nature. In: Ladle RJ,Whittaker RJ eds. Conservation biogeography. Oxford, UK: Wiley-Blackwell. 45–92.

[93]

RokasA,Williams BL,KingN,CarrollSB. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804.

[94]

RouxC,Fraïsse C,RomiguierJ,AnciauxY,GaltierN, BierneN. 2016. Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biology 14:e2000234.

[95]

ShawAJ,AllenB. 2000. Phylogenetic relationships, morphological incongruence, and geographic speciation in the Fontinalaceae (Bryophyta). Molecular Phylogenetics and Evolution 16:225–237.

[96]

SitesJW,Marshall JC. 2003. Delimiting species: A renaissance issue in systematic biology. Trends in Ecology & Evolution 18:462–470.

[97]

SkotnickiML,SelkirkPM, BroadyP,Adam KD,NinhamJA. 2001. Dispersal of the moss Campylopus pyriformis on geothermal ground near the summits of Mount Erebus and Mount Melbourne, Victoria Land, Antarctica. Antarctic Science 13:280–285.

[98]

ŚlipikoM,Myszczyński K,BuczkowskaK,BączkiewiczA,Sawicki J. 2022. Super-mitobarcoding in plant species identification? It can work! The case of leafy Liverworts belonging to the genus Calypogeia. International Journal of Molecular Sciences 23:15570.

[99]

SotiauxA,EnrothJ, OlssonS,Quandt D,VanderpoortenA. 2009. When morphology and molecules tell us different stories: A case-in-point with Leptodon corsicus, a new and unique endemic moss species from Corsica. Journal of Bryology 31:186–196.

[100]

StantonDWG,Frandsen P,WaplesRK,HellerR,RussoI-RM, Orozco-terWengelPA,PedersenC-ET,Siegismund HR,BrufordMW. 2019. More grist for the mill? Species delimitation in the genomic era and its implications for conservation. Conservation Genetics 20:101–113.

[101]

StechM,FrahmJ-P. 1999. The status of Platyhypnidium mutatum Ochyra & Vanderpoorten and the systematic value of the Donrichardsiaceae based on molecular data. Journal of Bryology 21:191–195.

[102]

StechM,FreyW, FrahmJ-P. 1999. The status and systematic position of Hypnobartlettia fontana Ochyra and the Hypnobartlettiaceae based on molecular data. Studies in austral temperate rain forest bryophytes 4. Lindbergia 24:97–102.

[103]

SteelePR,PiresJC. 2011. Biodiversity assessment: State-of-the-art techniques in phylogenomics and species identification. American Journal of Botany 98:415–425.

[104]

SternDL. 2000. Perspective: Evolutionary developmental Biology and the problem of variation. Evolution 54:1079–1091.

[105]

StöverBC,Müller KF. 2010. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11:7.

[106]

StraubSCK,ParksM, WeitemierK,Fishbein M,CronnRC,ListonA. 2012. Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. American Journal of Botany 99:349–364.

[107]

SucherNJ,CarlesMC. 2008. Genome-based approaches to the authentication of medicinal plants. Planta Medica 74:603–623.

[108]

TalaveraG,Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56:564–577.

[109]

van ZantenBO,BramerJPJ, HofmanA,Bijlsma R. 1988. Conflicting evidence concerning the taxonomic status of Racopilum intermedium Hampe (Racopilaceae, Bryopsida). Acta Botanica Neerlandica 37:546.

[110]

van ZantenBO,HofmanA. 1994. On the possible origin and taxonomic status of Hypnum heseleri Ando & Higuchi. The Journal of the Hattori Botanical Laboratory 75:107–117.

[111]

VanderpoortenA,ShawAJ. 2010. The application of molecular data to the phylogenetic delimitation of species in bryophytes: A note of caution. Phytotaxa 9:229–237.

[112]

Vieira LimaL,SalinoA, KesslerM,Rouhan G,TestoWL,Suzart ArgoloC,Elias Almeida T,GoFlagConsortium. 2023. Phylogenomic evolutionary insights in the fern family Gleicheniaceae. Molecular Phylogenetics and Evolution 184:107782.

[113]

VigalondoB,DraperI, MazimpakaV,Calleja JA,LaraF,GarilletiR. 2020. The Lewinskya affinis complex (Orthotrichaceae) revisited: Species description and differentiation. The Bryologist 123:455–482.

[114]

VigalondoB,Garilleti R,VanderpoortenA,PatiñoJ,DraperI, CallejaJA,Mazimpaka V,LaraF. 2019. Do mosses really exhibit so large distribution ranges? Insights from the integrative taxonomic study of the Lewinskya affinis complex (Orthotrichaceae, Bryopsida). Molecular Phylogenetics and Evolution 140:106598.

[115]

VigalondoB,LaraF, DraperI,Valcarcel V,GarilletiR,MazimpakaV. 2016. Is it really you,Orthotrichum acuminatum? Ascertaining a new case of intercontinental disjunction in mosses. Botanical Journal of the Linnean Society 180:30–49.

[116]

VilnetA,Konstantinova N,TroitskyA. 2012. Molecular phylogenetic data on reticulate evolution in the genus Barbilophozia Löske (Anastrophyllaceae, Marchantiophyta) and evidence of non-concerted evolution of rDNA in Barbilophozia rubescens allopolyploid. Phytotaxa 49:6–22.

[117]

WangL-G,LamTT-Y, XuS,DaiZ, ZhouL,Feng T,GuoP,DunnCW,JonesBR, BradleyT,Zhu H,GuanY,JiangY,YuG. 2020. Treeio: An R package for phylogenetic tree input and output with richly annotated and associated data. Molecular Biology and Evolution 37:599–603.

[118]

WernerO,Pariño J,González-ManceboJM, RosRM. 2007. The taxonomic status of Platyhypnidium torrenticola based on ITS sequence data. Cryptogamie, Bryologie 28:187–195.

[119]

WiensJJ. 2007. Species delimitation: New approaches for discovering diversity. Systematic Biology 56:875–878.

[120]

WrayGA. 2007. The evolutionary significance of cis-regulatory mutations. Nature Reviews Genetics 8:206–216.

[121]

YangJ-B,TangM, LiH-T,Zhang Z-R,LiD-Z. 2013. Complete chloroplast genome of the genus Cymbidium: Lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evolutionary Biology 13:84.

[122]

YoungAD,GillungJP. 2020. Phylogenomics—Principles, opportunities and pitfalls of big-data phylogenetics. Systematic Entomology 45:225–247.

[123]

YuG,SmithDK, ZhuH,GuanY, LamTT-Y. 2017. ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8:28–36.

[124]

ZhangC,RabieeM, SayyariE,Mirarab S. 2018. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19:153.

RIGHTS & PERMISSIONS

2023 The Authors. Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/