Enhanced precipitation has driven the evolution of subtropical evergreen broad-leaved forests in eastern China since the early Miocene: Evidence from ring-cupped oaks

Dong-Mei Jin , Quan Yuan , Xi-Ling Dai , Gregor Kozlowski , Yi-Gang Song

Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (4) : 677 -686.

PDF
Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (4) : 677 -686. DOI: 10.1111/jse.13022
Research Article

Enhanced precipitation has driven the evolution of subtropical evergreen broad-leaved forests in eastern China since the early Miocene: Evidence from ring-cupped oaks

Author information +
History +
PDF

Abstract

Subtropical evergreen broad-leaved forest (EBLF) is the predominant vegetation type in eastern China. However, the majority of the region it covers in eastern China was an arid area during the Paleogene. The temporal history and essential factors involved in the evolution of subtropical EBLFs in eastern China remain enigmatic. Here we report on the niche evolution of Quercus section Cyclobalanopsis, which appeared in south China and Japan during the Eocene and became a dominant component of subtropical EBLFs since the Miocene in eastern Asia, using integrative analysis of occurrences, climate data and a dated phylogeny of 35 species in Cyclobalanopsis. Species within clades Cyclobalanoides, Lamellosa, and Helferiana mainly exist in the Himalaya–Hengduan region, adapting to a plateau climate, while species within the other clades mainly live in eastern China under the control of the East Asian monsoon. Reconstructed history showed that significant divergence of climatic tolerance in Cyclobalanopsis began around 19 million years ago (Ma) in the early Miocene. Simultaneously, disparities in precipitation of wettest/warmest quarter and annual precipitation were markedly enhanced in Cyclobalanopsis, especially in the recent eastern clades. During the Miocene, the marked radiation of Cyclobalanopsis and many other dominant taxa of subtropical EBLFs strongly suggest the rapid formation and expansion of subtropical EBLFs in eastern China. Our research highlights that the intensification of the East Asian monsoon and subsequent occupation of new niches by the ancient clades already present in the south may have jointly promoted the formation of subtropical EBLFs in eastern China since the early Miocene.

Keywords

climate / East Asian monsoon / Miocene / niche evolution / Quercus

Cite this article

Download citation ▾
Dong-Mei Jin, Quan Yuan, Xi-Ling Dai, Gregor Kozlowski, Yi-Gang Song. Enhanced precipitation has driven the evolution of subtropical evergreen broad-leaved forests in eastern China since the early Miocene: Evidence from ring-cupped oaks. Journal of Systematics and Evolution, 2024, 62(4): 677-686 DOI:10.1111/jse.13022

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChenYS,DengT, ZhouZ,Sun H. 2018. Is the East Asian flora ancient or not? National Science Review 5: 920-932.

[2]

DengM,JiangXL, HippAL,Manos PS,HahnM. 2018. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Molecular Phylogenetics and Evolution 119: 170-181.

[3]

DenkT,GrimmGW, ManosPS,Deng M,HippAL. 2017. An updated infrageneric classification of the oaks: Review of previous taxonomic schemes and synthesis of evolutionary patterns. In: Gil-Pelegrín E,Peguero-Pina J,Sancho-Knapik D eds. Oaks physiological ecology. Exploring the functional diversity of genus Quercus L. Tree physiology. Cham,Switzerland: Springer. 7: 12-38.

[4]

DingL,SpicerRA, YangJ,Xu Q,CaiF,LiS,LaiQ, WangH,Spicer TEV,YueY,ShuklaA,Srivastava G,KhanMA,BeraS,Mehrotra R. 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45: 215-218.

[5]

DingST,WuJY, TangDL,Chen SY,MoLB,SunBN. 2021. Seed cones of Tsuga (Pinaceae) from the upper Miocene of eastern China: Biogeographic and paleoclimatic implications. Review of Palaeobotany and Palynology 285: 104358.

[6]

EvansMEK,SmithSA, FlynnRS,Donoghue MJ. 2009. Climate, niche evolution, and diversification of the “bird-cage”evening primroses (Oenothera, Sections Anogra and Kleinia). American Naturalist 173: 225-240.

[7]

FarnsworthA,LuntDJ, RobinsonSA,Valdes PJ,RobertsWHG,CliftPD,Markwick P,SuT,WrobelN,BraggF, KellandSJ,Pancost RD. 2019. Past East Asian monsoon evolution controlled by paleogeography, not CO2. Science Advances 5: eaax1697.

[8]

FickSE,HijmansRJ. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302-4315.

[9]

FujiwaraK,BoxEO. 1998. Evergreen broad-leaved forests in Japan and eastern north America: Vegetation shift under climatic warming. In: Klotzli F,Walther GR eds. Conference on recent shifts in vegetation boundaries of deciduous forests, especially due to general global warming. Ascona: Birkhauser. 273-300.

[10]

GourbetL,LeloupPH, PaquetteJL,Sorrel P,MaheoG,WangG,YadongX, CaoK,AntoinePO, EymardI,Liu W,LuH,ReplumazA,Chevalier ML,KexinZ,JingW,ShenT. 2017. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics 700-701: 162-179.

[11]

GuoSX. 1978. Pliocene floras of western Sichuan. Acta Palaeontologica Sinica 17: 343-350. (in Chinese)

[12]

GuoSX. 2011. The late Miocene Bangmai flora from Lincang County of Yunnan, southwestern China. Acta Palaeontologica Sinica 50: 353-408. (in Chinese)

[13]

GuoZT. 2017. Loess Plateau attests to the onsets of monsoon and deserts. Scientia Sinica Terrae 47: 421-437. (in Chinese)

[14]

GuoZT,SunB, ZhangZS,Peng SZ,XiaoGQ,GeJY,HaoQZ, QiaoYS,Liang MY,LiuJF,YinQZ,WeiJJ. 2008. A major reorganization of Asian climate by the early Miocene. Climate of the Past 4: 153-174.

[15]

GuptaAK,Yuvaraja A,PrakasamM,ClemensSC,VeluA. 2015. Evolution of the South Asian monsoon wind system since the late Middle Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 438: 160-167.

[16]

HaiL,LiXQ, ZhangJB,Xiang XG,LiRQ,JabbourF,OrtizRDC, LuAM,ChenZD, WangW. 2022. Assembly dynamics of East Asian subtropical evergreen broadleaved forests: New insights from the dominant Fagaceae trees. Journal of Integrative Plant Biology 64: 2126-2134.

[17]

HeWL,WangXJ. 2021. A Miocene flora from the Toupi Formation in Jiangxi Province, southeastern China. Palaeoworld 30: 757-769.

[18]

HermanAB,SpicerRA, AleksandrovaGN,YangJ,KodrulTM, MaslovaNP,Spicer TEV,ChenG,JinJH. 2017. Eocene-early Oligocene climate and vegetation change in southern China: Evidence from the Maoming Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 479: 126-137.

[19]

HippAL,ManosPS, HahnM,Avishai M,BodenesC,Cavender-BaresJ,CrowlAA, DengM,Denk T,Fitz-GibbonS,GailingO,Gonzalez-Elizondo MS,Gonzalez-RodriguezA, GrimmGW,Jiang XL,KremerA,LesurI,McVayJD, PlomionC,Rodriguez-Correa H,SchulzeED,SimeoneMC,SorkVL, Valencia-AvalosS. 2020. Genomic landscape of the global oak phylogeny. New Phytologist 226: 1198-1212.

[20]

HuangC,ZhangY, BartholomewB. 1999. Fagaceae. In: Wu ZY,Raven PH,Hong DY eds. Flora of China. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. 4: 380-400.

[21]

HuziokaK,Takahasi E. 1970. The Eocene flora of the Ube coal-field, southwest Honshu, Japan. Journal of the Mining College, Akita University, Series A, Mining Geology 4: 1-88.

[22]

JiaH,JinP, WuJ,WangZ, SunB. 2015. Quercus (subg. Cyclobalanopsis) leaf and cupule species in the late Miocene of eastern China and their paleoclimatic significance. Review of Palaeobotany and Palynology 219: 132-146.

[23]

JiaH,SunB, LiX,XiaoL, WuJ. 2009. Microstructures of one species of Quercus from the Neogene in Eastern Zhejiang and its palaeoenvironmental indication. Earth Science Frontiers 16: 79-90.

[24]

JiangXL,HippAL, DengM,Su T,ZhouZK,YanMX. 2019. East Asian origins of European holly oaks (Quercus section Ilex Loudon) via the Tibet-Himalaya. Journal of Biogeography 46: 2203-2214.

[25]

KeithDA,Ferrer-Paris JR,NicholsonE,BishopMJ,Polidoro BA,Ramirez-LlodraE,TozerMG,NelJL, NallyRM,Gregr EJ,WatermeyerKE,EsslF,Faber-Langendoen D,FranklinJ,LehmannCER,EtterA, RouxDJ,Stark JS,RowlandJA,BrummittNA,Fernandez-Arcaya UC,SuthersIM,WiserSK,DonohueI, JacksonLJ,Pennington RT,IliffeTM,GerovasileiouV,GillerP, RobsonBJ,Pettorelli N,AndradeA,LindgaardA,Tahvanainen T,TeraudsA,ChadwickMA,MurrayNJ, MoatJ,Pliscoff P,ZagerI,KingsfordRT. 2022. A function-based typology for Earth’s ecosystems. Nature 610: 513-518.

[26]

KembelSW,CowanPD, HelmusMR,Cornwell WK,MorlonH,AckerlyDD,Blomberg SP,WebbCO. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463-1464.

[27]

LiR,SunB, WangQ,Ma F,XuX,WangY,JiaH. 2015. Two new Castanopsis (Fagaceae) species based on cupule and foliage from the upper Miocene of eastern Zhejiang, China. Plant Systematics and Evolution 301: 25-39.

[28]

LingCC,MaFJ, DongJL,Zhou GH,WangQJ,SunBN. 2021. A mid-altitude area in southwestern China experienced a humid subtropical climate with subtle monsoon signatures during the early Oligocene: Evidence from the Ningming flora of Guangxi. Palaeogeography, Palaeoclimatology, Palaeoecology 579: 110601.

[29]

LiuX,SongH, JinJ. 2020. Diversity of Fagaceae on Hainan Island of South China during the Middle Eocene: Implications for phytogeography and paleoecology. Frontiers in Ecology and Evolution 8: 225.

[30]

LiuXY,SongHZ, WuXK,HuJR, HuangWY,Quan C,JinJH. 2023. Late Oligocene fossil acorns and nuts of Quercus section Cyclobalanopsis from the Nanning Basin, Guangxi, South China. Plant Diversity 45: 434-445.

[31]

LiuXY,XuSL, HanMQ,Jin J. 2019. An early Oligocene fossil acorn, associated leaves and pollen of the ring-cupped oaks (Quercus subg. Cyclobalanopsis) from Maoming Basin, South China. Journal of Systematics and Evolution 57: 153-168.

[32]

LuLM,MaoLF, YangT,Ye JF,LiuB,LiHL,SunM, MillerJT,Mathews S,HuHH,NiuYT,PengDX, ChenYH,Smith SA,ChenM,XiangKL,LeCT, DangVC,Lu AM,SoltisPS,SoltisDE,LiJH, ChenZD. 2018. Evolutionary history of the angiosperm flora of China. Nature 554: 234-238.

[33]

LuoY,ZhouZK. 2001. Phytogeography of Quercus subg. Cyclobalanopsis. Acta Botanica Yunnanica 23: 1-16.

[34]

ManchesterSR. 1994. Fruits and seeds of the middle eocene nut beds flora Clarno Formation, Oregon. Palaeontographica Americana 58: 1-205.

[35]

T Nagai,H Saito,K Suzuki,M Takahashi eds. 2019. Kuroshio current: Physical, biogeochemical, and ecosystem dynamics. Hoboken, NJ: Wiley. 3-50.

[36]

PennellMW,EastmanJM, SlaterGJ,Brown JW,UyedaJC,FitzJohnRG,AlfaroME, HarmonLJ. 2014. geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30: 2216-2218.

[37]

PhillipsSJ,DudikM. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161-175.

[38]

R Core Team. 2023. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from http://www.r-project.org

[39]

RoydenLH,Burchfiel BC,van der HilstRD. 2008. The geological evolution of the Tibetan plateau. Science 321: 1054-1058.

[40]

SongY. 2013. Evergreen boradleaved forests in China, classification-ecology-conservation. Beijing: Science Press. 3-9. (in Chinese)

[41]

SpicerRA. 2017. Tibet, the Himalaya, Asian monsoons and biodiversity-In what ways are they related? Plant Diversity 39: 233-244.

[42]

SpicerRA,HermanAB, LiaoW,Spicer TEV,KodrulTM,YangJ,JinJH. 2014. Cool tropics in the Middle Eocene: Evidence from the Changchang Flora, Hainan Island, China. Palaeogeography, Palaeoclimatology, Palaeoecology 412: 1-16.

[43]

SuT,SpicerRA, LiSH,XuH, HuangJ,Sherlock S,HuangYJ,LiSF,WangL, JiaLB,Deng WYD,LiuJ,DengCL,ZhangST, ValdesPJ,Zhou ZK. 2019. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. National Science Review 6: 495-504.

[44]

SunXJ,WangPX. 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology 222: 181-222.

[45]

TanaiT. 1995. Fagaceous leaves from the Paleogene of Hokkaido, Japan. Bulletin of the National Science Museum Series C (Geology and Paleontology) 21: 71-101.

[46]

TianY,SpicerRA, HuangJ,Zhou Z,SuT,WiddowsonM,JiaL, LiS,WuW, XueL,LuoP, ZhangS. 2021. New early oligocene zircon U-Pb dates for the ‘Miocene’Wenshan Basin, Yunnan, China: Biodiversity and paleoenvironment. Earth and Planetary Science Letters 565: 116929.

[47]

WangPX. 1990. Neogene stratigraphy and paleoenvironments of China. Palaeogeography, Palaeoclimatology, Palaeoecology 77: 315-334.

[48]

XiaoTW,YanHF, GeXJ. 2022. Plastid phylogenomics of tribe Perseeae (Lauraceae) yields insights into the evolution of East Asian subtropical evergreen broad-leaved forests. BMC Plant Biology 22: 32.

[49]

XingY,HuJ, JacquesFMB,Wang L,SuT,HuangY,LiuYS, ZhouZ. 2013. A new Quercus species from the upper Miocene of southwestern China and its ecological significance. Review of Palaeobotany and Palynology 193: 99-109.

[50]

XuH,SuT, ZhangST,Deng M,ZhouZK. 2016. The first fossil record of ring-cupped oak (Quercus L. subgenus Cyclobalanopsis (Oersted) Schneider) in Tibet and its paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 442: 61-71.

[51]

YabeA. 2008. Early Miocene terrestrial climate inferred from plant megafossil assemblages of the Joban and Soma areas, Northeast Honshu, Japan. Bulletin of the Geological Survey of Japan 59: 397-413.

[52]

YuXQ,GaoLM, SoltisDE,Soltis PS,YangJB,FangL,YangSX, LiDZ. 2017. Insights into the historical assembly of East Asian subtropical evergreen broadleaved forests revealed by the temporal history of the tea family. New Phytologist 215: 1235-1248.

[53]

ZachosJC,DickensGR, ZeebeRE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451: 279-283.

[54]

ZhaoN,ParkS, ZhangYQ,Nie ZL,GeXJ,KimS,YanHF. 2022. Fingerprints of climatic changes through the late Cenozoic in southern Asian flora: Magnolia section Michelia (Magnoliaceae). Annals of Botany 130: 41-52.

[55]

ZhouZK. 1999. Fossils of the Fagaceae and their implications in systematics and biogeography. Acta Phytotaxonomica Sinica 37: 369-385. (in Chinese)

RIGHTS & PERMISSIONS

2023 The Authors. Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/