Grass pollen surface ornamentation is diverse across the phylogeny: Evidence from northern South America and the global literature

Cai-Xia Wei , Phillip E. Jardine , Li-Mi Mao , Luke Mander , Mao Li , William D. Gosling , Carina Hoorn

Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (4) : 687 -701.

PDF
Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (4) : 687 -701. DOI: 10.1111/jse.13021
Research Article

Grass pollen surface ornamentation is diverse across the phylogeny: Evidence from northern South America and the global literature

Author information +
History +
PDF

Abstract

The grasses are one of the most diverse plant families on Earth. However, their classification and evolutionary history are obscured by their pollen stenopalynous (similar) morphology. A combination of high-resolution imaging of pollen surface ornamentation and computational analysis has previously been proposed as a promising tool to classify grass taxonomic boundaries. In this study, we test this hypothesis by studying Poaceae pollen across the phylogeny from plants collected in northern South America and also from published literature across the globe. We assessed if morphotypes that we establish using descriptive terminology are supported by computational analysis, if they vary along six (a)biotic variables and vary across the phylogeny. Based on this analysis, we constructed a reference framework for pollen surface ornamentation morphotypes. Our results showed that there is a wide variation of grass pollen surface ornamentation. We identified nine new and confirmed six known morphotypes, establishing a data set for 223 species (243 individual plant specimens) that represent 11 subfamilies. Computational analysis showed that our morphotypes are well-supported by two quantitative features of pollen sculptural elements (size and density). The specific data set and mapping of the phylogeny confirmed that pollen morphological sculpture is unrelated to (a)biotic variables and is diverse across the phylogeny.

Keywords

computational analysis / exine / grass / phylogeny / pollen morphology / quantitative analysis.

Cite this article

Download citation ▾
Cai-Xia Wei, Phillip E. Jardine, Li-Mi Mao, Luke Mander, Mao Li, William D. Gosling, Carina Hoorn. Grass pollen surface ornamentation is diverse across the phylogeny: Evidence from northern South America and the global literature. Journal of Systematics and Evolution, 2024, 62(4): 687-701 DOI:10.1111/jse.13021

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AnarM,AhmadM, ZafarS,Elnaggar AY,ZafarM,SultanaS,TariqA, AnjumF,Hussein EE,KiliçÖ,OzdemirFA. 2022. Palyno-morphological diversity of Asteraceous and Poaceous allergenic plant using microscopic techniques in lesser Himalaya-Pakistan. Microscopy Research and Technique 85: 2061-2075.

[2]

AndersenTS,Bertelsen F. 1972. Scanning electron microscope studies of pollen of cereals and other grasses. Grana 12: 79-86.

[3]

BeugHJ. 2004. Leitfaden der pollenbestimmung fur Mitteleuropa und angrenzende Gebiete. Verlag Friedrich Pfeil 21: 542.

[4]

BlairJ,NippertJ, BriggsJ. 2014. Grassland ecology 14. Ecology and the Environment 389: 389-423.

[5]

BushMB. 2002. On the interpretation of fossil Poaceae pollen in the lowland humid neotropics. Palaeogeography, Palaeoclimatology, Palaeoecology 177: 5-17.

[6]

ChristinP-A,OsborneCP, ChateletDS,Columbus JT,BesnardG,HodkinsonTR,Garrison LM,VorontsovaMS,EdwardsEJ. 2013. Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proceedings of the National Academy of Sciences of the United States of America 110: 1381-1386.

[7]

ChaturvediM,DattaK, NairPKK. 1998. Pollen morphology of Oryza (Poaceae). Grana 37: 79-86.

[8]

DóreaMC,SantosDWJ, OliveiraRP,Funch LS,SantosFAR. 2018. Reproductive traits related to anemophily and insect visitors in two species of Poaceae from the Brazilian Atlantic rainforest. Brazilian Journal of Botany 41: 425-434.

[9]

DóreaMDC,de Oliveira RP,BanksH,dos SantosF,DeAR. 2017. Sculptural elements on the ectexine surface of Poaceae pollen from Neotropical forests: Patterns and implications for taxonomic and evolutionary studies in this family. Botanical Journal of the Linnean Society 185: 542-571.

[10]

DulbergerR. 1981. Dimorphic exine sculpturing in three distylous species of Linum (Linaceae). Plant Systematics and Evolution 139: 113-119.

[11]

FergusonIK,Verdcourt B,PooleMM. 1977. Pollen morphology in the genera Merremia and Operculina (Convolvulaceae) and its taxonomic significance. Kew Bulletin 31: 763-773.

[12]

GallaherTJ,Peterson PM,SorengRJ,ZuloagaFO,LiDZ, ClarkLG,Tyrrell CD,WelkerCA,KelloggEA,TeisherJK. 2022. Grasses through space and time: An overview of the biogeographical and macroevolutionary history of Poaceae. Journal of Systematics and Evolution 60: 522-569.

[13]

GibsonDJ. 2009. Grasses and grassland ecology. UK: Oxford University Press.

[14]

Grass Phylogeny Working Group (GPWG) II. 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytologist 193: 304-312.

[15]

Grass Phylogeny Working Group (GPWG),Barker GP,NPL,ClarkJI,DavisMR, DuvallMR,Guala GF,HsiaoC,KelloggEA,LinderHP, Mason-GamerRJ,MathewsSY. 2001. Annals of the Missouri Botanical Garden 88: 373-457.

[16]

Guimarães JTF,Carreira LMM,AlvesR,Souza FilhoPWM,Giannini TC,MacambiraHJ,SilvaEF,DiasACR, SilvaCB,Araújo RomeiroL,Rodrigues TM. 2018. Pollen morphology of the Poaceae: Implications of the palynological and paleoecological records of the southeastern Amazon in Brazil. Palynology 42: 311-323.

[17]

HalbritterH,UlrichS, GrímssonF,WeberM,ZetterR, HesseM,Buchner R,SvojtkaM,Frosch-RadivoA. 2018. Illustrated pollen terminology. Vienna, Austria: Springer.

[18]

HuangW,ZhangL, ColumbusJT,Hu Y,ZhaoY,TangL,GuoZ, ChenW,McKain M,BartlettM,HuangCH. 2022. A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis. Molecular Plant 15: 755-777.

[19]

IbrahimDG,BurkeT, RipleyBS,Osborne CP. 2009. A molecular phylogeny of the genus Alloteropsis (Panicoideae, Poaceae) suggests an evolutionary reversion from C4 to C3 photosynthesis. Annals of Botany 103: 127-136.

[20]

KadereitG,BohleyK, LauterbachM,Tefarikis DT,KadereitJW. 2017. C3-C4 intermediates may be of hybrid origin-A reminder. New Phytologist 215: 70-76.

[21]

KöhlerE,LangeE. 1979. A contribution to distinguishing cereal from wild grass pollen grains by LM and SEM. Grana 18: 133-140.

[22]

LeeG-A,DavisAM, SmithDG,McAndrews JH. 2004. Identifying fossil wild rice (Zizania) pollen from Cootes Paradise, Ontario: A new approach using scanning electron microscopy. Journal of Archaeological Science 31: 411-421.

[23]

LinderHP. 1987. The evolutionary history of the Poales/Restionales: A hypothesis. Kew Bulletin 42: 297-318.

[24]

LinderHP,LehmannCER, ArchibaldS,Osborne CP,RichardsonDM. 2018. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biological Reviews 93: 1125-1144.

[25]

LinderHP,RudallPJ. 2005. Evolutionary history of Poales. Annual Review of Ecology, Evolution, and Systematics 36: 107-124.

[26]

López-MerinoL,Leroy SAG,HaldorsenS,HeunM,Reynolds A. 2015. Can Triticum urartu (Poaceae) be identified by pollen analysis? Implications for detecting the ancestor of the extinct two-grained einkorn-like wheat. Botanical Journal of the Linnean Society 177: 278-289.

[27]

LovisoloMR,GalatiBG. 2012. Diversidad de orbículas en Poaceae. Boletín de la Sociedad Argentina de Botánica 47: 87-96.

[28]

ManderL,LiM, MioW,FowlkesCC, PunyasenaSW. 2013. Classification of grass pollen through the quantitative analysis of surface ornamentation and texture. Proceedings of the Royal Society B: Biological Sciences 280: 20131905.

[29]

ManderL,Punyasena SW. 2015. Grass pollen surface ornamentation: A review of morphotypes and taxonomic utility. Journal of Micropalaeontology 35: 121-124.

[30]

MercuriAM,Clò E,FlorenzanoA. 2022. Multiporate pollen of Poaceae as bioindicator of environmental stress: First archaeobotanical evidence from the early-middle Holocene site of Takarkori in the central Sahara. Quaternary 5: 41.

[31]

MooreNA,CamacJS, MorganJW. 2019. Effects of drought and fire on resprouting capacity of 52 temperate Australian perennial native grasses. New Phytologist 221: 1424-1433.

[32]

MorgadoLN,Gonçalves-Esteves V,ResendesR,VenturaMAM. 2015. Pollen morphology of Poaceae (Poales) in the Azores, Portugal. Grana 54: 282-293.

[33]

NairPKK,SharmaM. 1963. Pollen grains of Cocos Nucifera Linn. Grana 4: 373-379.

[34]

NeedhamI,Vorontsova MS,BanksH,RudallPJ. 2015. Pollen of Malagasy grasses as a potential tool for interpreting grassland palaeohistory. Grana 54: 247-262.

[35]

NoorMJ,AhmadM. 2021. Scanning electron imaging of mellitophilous and allergenic pollen grain of arid and northern irrigated agroecological zones of Pakistan. Microscopy Research and Technique 84: 1834-1861.

[36]

OsborneCP,SalomaaA, KluyverTA,Visser V,KelloggEA,MorroneO,Vorontsova MS,ClaytonWD,SimpsonDA. 2014. A global database of C4 photosynthesis in grasses. New Phytologist 2014: 441-446.

[37]

PageJS. 1978. A scanning electron microscope survey of grass pollen. Kew Bulletin 32: 313-319.

[38]

PalazzesiL,HidalgoO, BarredaVD,Forest F,HöhnaS. 2022. The rise of grasslands is linked to atmospheric CO2 decline in the late Palaeogene. Nature Communications 13(1): 293.

[39]

PoinarGJ,Alderman S,WunderlichJ. 2015. One hundred million year old ergot: Psychotropic compounds in the Cretaceous. Palaeodiversity 8: 13-19.

[40]

PrasadV,Strömberg CAE,AlimohammadianH,SahniA. 2005. Paleontology: Dinosaur coprolites and the early evolution of grasses and grazers. Science 310: 1177-1180.

[41]

PuntW,HoenPP, BlackmoreS,Nilsson S,Le ThomasA. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143: 1-81.

[42]

R Core Team. 2021. R: A language and environment for statistical computing. Foundation for Statistical Computing, Vienna.

[43]

RenvoizeSA. 1981. The sub-family Arundinoideae and its position in relation to a general classification of the Gramineae. Kew Bulletin 36: 85-102.

[44]

RenvoizeSA. 1986. A survey of leaf-blade anatomy in grasses VIII. Arundinoideae. Kew Bulletin 37: 323-338.

[45]

RomeroIC,KongS, FowlkesCC,Jaramillo C,UrbanMA,Oboh-IkuenobeF,D’Apolito C,PunyasenaSW. 2020. Improving the taxonomy of fossil pollen using convolutional neural networks and superresolution microscopy. Proceedings of the National Academy of Sciences United States of America 117: 28496-28505.

[46]

RuggieroF,BediniG. 2018. Systematic and morphologic survey of orbicules in allergenic angiosperms. Aerobiologia 34: 405-422.

[47]

Sánchez-KenJG,Clark LG. 2010. Phylogeny and a new tribal classification of the Panicoideae sl (Poaceae) based on plastid and nuclear sequence data and structural data. American Journal of Botany 97(10): 1732-1748.

[48]

Salgado-LabouriauML,Rinaldi M. 1990. Palynology of Gramineae of the Venezuelan mountains. Grana 29: 119-128.

[49]

SorengRJ,Peterson PM,RomaschenkoK,DavidseG,ZuloagaFO, JudziewiczEJ,FilgueirasTS,DavisJI, MorroneO. 2015. A worldwide phylogenetic classification of the Poaceae (Gramineae). Journal of Systematics and Evolution 53: 117-137.

[50]

SorengRJ,Peterson PM,ZuloagaFO,RomaschenkoK,ClarkLG, TeisherJK,Gillespie LJ,BarberáP,WelkerCA,KelloggEA, LiDZ. 2022. A worldwide phylogenetic classification of the Poaceae (Gramineae) III: An update. Journal of Systematics and Evolution 60: 476-521.

[51]

SouzaPFde,SantosCMRdos, ReeJ,GuerraMP, PescadorR. 2021. Flowering and morphological characterization of Dendrocalamus asper androecium and pollen grains. Grana 60: 20-34.

[52]

StrombergCAE. 2011. Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences 39: 517-544.

[53]

ToledoJAM,RossiML, de Andrade BressanE,ShirasunaRT,Martinelli AP,OliveiraGCX. 2022. Floral characteristics, pollen morphology, and viability of sugarcane hybrids (Saccharum officinarum) and the neotropical wild relative,S. villosum. Flora 294: 152118.

[54]

UllahI,AhmadM, JabeenA,Yusuf MO,ArfanM,KilicO,BagciE, ZafarM,Sultana S,KhanS,UsmaA. 2021. Palyno-morphological characterization of selected allergenic taxa of family Poaceae from Islamabad-Pakistan using microscopic techniques. Microscopy Research and Technique 84: 2544-2558.

[55]

VinckierS,SmetsE. 2001. The potential role of orbicules as a vector of allergens. Allergy 56: 1129-1136.

[56]

VisezN,Nadaï P,ChoëlM,FarahJ,Hamzé M,SénéchalH, PauwelsM,Frérot H,ThibaudonM,PoncetP. 2021. Biochemical composition of Phleum pratense pollen grains: A review. Molecular Immunology 136: 98-109.

[57]

WatsonL,BellEM. 1975. A surface-structural survey of some taxonomically diverse grass pollens. Australian Journal of Botany 23: 981-990.

[58]

Weber-El GhobaryMO. 1986. Dimorphic exine sculpturing in two distylous species of Dyerophytum (Plumbaginaceae). Plant Systematics and Evolution 152: 267-276.

[59]

WeiC,JardinePE, GoslingWD,Hoorn C. 2023. Is Poaceae pollen size a useful proxy in palaeoecological studies? New insights from a Poaceae pollen morphological study in the Amazon. Review of Palaeobotany and Palynology 308: 104790.

[60]

WillsKE,WhalleyRDB, BruhlJJ. 2000. Systematic studies in Paniceae (Poaceae): Homopholis and Whalleya gen. et sp. nov. Australian Systematic Botany 13: 437-468.

[61]

WhiteRP,MurrayS, RohwederM,Prince SD,ThompsonKM. 2000. Grassland ecosystems. Washington,DC: World Resources Institute. 81.

[62]

WuY,YouHL, LiXQ. 2018. Dinosaur-associated Poaceae epidermis and phytoliths from the Early Cretaceous of China. National Science Review 5: 721-727.

[63]

YasniukМV,Kaminska ОA,RodinkovaV. 2020. Grass pollen morphology investigation as a basis for monitoring of allergenic biological particles in an automatic mode. Reports of Morphology 26: 32-38.

RIGHTS & PERMISSIONS

2023 The Authors. Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/