New insights into infrageneric relationships of Lonicera (Caprifoliaceae) as revealed by nuclear ribosomal DNA cistron data and plastid phylogenomics

Xu-Long Yang1,2, Qing-Hui Sun3, Diego F. Morales-Briones4, Jacob B. Landis5,6, Da-Juan Chen1, Hong-Xin Wang1,7, Jun Wen8, Hua-Feng Wang1,2()

PDF
Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (3) : 333-357. DOI: 10.1111/jse.13014
Research Article

New insights into infrageneric relationships of Lonicera (Caprifoliaceae) as revealed by nuclear ribosomal DNA cistron data and plastid phylogenomics

  • Xu-Long Yang1,2, Qing-Hui Sun3, Diego F. Morales-Briones4, Jacob B. Landis5,6, Da-Juan Chen1, Hong-Xin Wang1,7, Jun Wen8, Hua-Feng Wang1,2()
Author information +
History +

Abstract

The discontinuous geographic distribution pattern of plants in the north temperate zone has been a focus of biogeographic research, especially concerning the mechanisms behind the formation of such a pattern and the spatial and temporal evolution of this intermittent distribution pattern. Hypotheses of boreotropical origin, land bridge migration, and out-of-Tibet have been proposed to explain the formation of the discontinuous distribution pattern. The distribution of Lonicera shows a typical Europe–Asia–North America discontinuous distribution, which makes for a good case study to investigate the above three hypotheses. In this study, we inferred the phylogeny based on plastid genomes and a nuclear data set with broad taxon sampling, covering 83 species representing two subgenera and four sections. Both nuclear and plastid phylogenetic analyses found section Isika polyphyletic, while sections Nintooa, Isoxylosteum, and Coelxylosteum were monophyletic in subgenus Chamaecerasus. Based on the nuclear and chloroplast phylogeny, we suggest transferring Lonicera maximowiczii and Lonicera tangutica into section Nintooa. Reconstruction of ancestral areas suggests that Lonicera originated in the Qinghai–Tibetan Plateau (QTP) and/or Asia, and subsequently dispersed to other regions. The aridification of the Asian interior may have facilitated the rapid radiation of Lonicera in the region. At the same time, the uplifts of the Tibetan Plateau appear to have triggered the spread and recent rapid diversification of the genus on the QTP and adjacent areas. Overall, our results deepen the understanding of the evolutionary diversification history of Lonicera.

Keywords

Caprifoliaceae / Lonicera / nuclear ribosomal DNA cistron / plastid phylogenomics / polyphyletic / section Coeloxylosteum / section Isika

Cite this article

Download citation ▾
Xu-Long Yang, Qing-Hui Sun, Diego F. Morales-Briones, Jacob B. Landis, Da-Juan Chen, Hong-Xin Wang, Jun Wen, Hua-Feng Wang. New insights into infrageneric relationships of Lonicera (Caprifoliaceae) as revealed by nuclear ribosomal DNA cistron data and plastid phylogenomics. Journal of Systematics and Evolution, 2024, 62(3): 333‒357 https://doi.org/10.1111/jse.13014

References

1 DI Axelrod. 1973. History of the Mediterranean ecosystem in California. In: di Castri F, Mooney HA eds. Mediterranean type ecosystems. Ecological studies. Berlin: Springer. 7: 225–277.
2 R Bouckaert, TG Vaughan, J Barido-Sottani, S Duchêne, M Fourment, A Gavryushkina, AJ Drummond. 2019. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15: e1006650.
3 M Brudno, CB Do, GM Cooper, MF Kim, E Davydov, ED Green, NISC Comparative Sequencing Program. 2003. LAGAN and multi-LAGAN: Efficient tools for large-scale multiple alignment of genomic DNA. Genome Research 13: 721–731.
4 AL Budantsev. 1987. System of the genus Dracocephalum (Lamiaceae). Botanicheskii Zhurnal 72: 260–267.
5 AL Budantsev. 1993. A synopsis of the tribe Nepeteae (Lamiaceae) – the genera Lophanthus, Dracocephalum, Cedronella, Schizonepeta and Agastache. Botanicheskii Zhurnal 78: 106–115.
6 C Chen, ZC Qi, XH Xu, HP Comes, MA Koch, XJ Jin, YX Qiu. 2014. Understanding the formation of Mediterranean–African–Asian disjunctions: Evidence for Miocene climate-driven vicariance and recent long-distance dispersal in the Tertiary relict Smilax aspera (Smilacaceae). New Phytologist 204: 243–255.
7 YP Chen, YS Chen, CL Xiang. 2021. Dracocephalum microphyton (Lamiaceae: Nepetoideae), a new species from south-west China. Kew Bulletin 76: 287–292.
8 SS Dong, YL Wang, NH Xia, Y Liu, M Liu, L Lian, N Li, LF Li, XA Lang, YQ Gong, L Chen, E Wu, SZ Zhang. 2022. Plastid and nuclear phylogenomic incongruences and biogeographic implications of Magnolia s.l. (Magnoliaceae). Journal of Systematics and Evolution 60: 1–15.
9 MJ Donoghue, CD Bell, J Li. 2001. Phylogenetic patterns in Northern Hemisphere plant geography. International Journal of Plant Sciences 162: S41–S52.
10 JJ Doyle, JL Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.
11 AJ Drummond, MA Suchard, D Xie, A Rambaut. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973.
12 JP Du, YM Zhang, Y Wang. 2005. Advances in the study of Lonicera plants. Northern Gardening 4: 11–13.
13 L Duan, AJ Harris, C Su, W Ye, SW Deng, L Fu, HF Chen. 2020. A fossil-calibrated phylogeny reveals the biogeographic history of the Cladrastis clade, an amphi-Pacific early-branching group in papilionoid legumes. Molecular Phylogenetics and Evolution 143: 106673.
14 WB Fan. 2019. Chloroplast genomic variation and evolution of representative taxa of the order Szechuania. Master's Thesis. Xi′an: Northwestern University.
15 J Fraser, D McCartney, H Najda, Z Mir. 2004. Yield potential and forage quality of annual forage legumes in southern Alberta and northeast Saskatchewan. Canadian Journal of Plant Science 84: 143–155.
16 EM Friis. 1985. Angiosperm fruits and seeds from the Middle Miocene of Jutland (Denmark). Munksgaard: Kommissionær.
17 H Hara. 1983. A revision of Caprifoliaceae of Japan with reference to allied plants in other districts and the Adoxaceae. Ginkgoana 5: 1–336.
18 AJ Harris, PT Chen, XW Xu, JQ Zhang, X Yang, J Wen. 2017. A molecular phylogeny of Staphyleaceae: Implications for generic delimitation and classical biogeographic disjunctions in the family. Journal of Systematics and Evolution 55: 124–141.
19 PS Hsu, HJ Wang. 1988. Lonicera. In: Flora Reipublicae Popularis Sinicae. Beijing: Science Press. 72: 143–259,pls. 38–69. (in Chinese)
20 DR Jia, RJ Abbott, TL Liu, KS Mao, IV Bartish, JQ Liu. 2012. Out of the Qinghai–Tibet Plateau: Evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophaë rhamnoides (Elaeagnaceae). New Phytologist 194: 1123–1133.
21 XL Jiang, AL Hipp, M Deng, T Su, ZK Zhou, MX Yan. 2019. East Asian origins of European holly oaks (Quercus section Ilex Loudon) via the Tibet-Himalaya. Journal of Biogeography 46: 2203–2214.
22 KB Kang, SJ Kang, MS Kim, DY Lee, SI Han, TB Kim, SH Sung. 2018. Chemical and genomic diversity of six Lonicera species occurring in Korea. Phytochemistry 155: 126–135.
23 K Katoh, DM Standley. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.
24 XR Ke, DF Morales-Briones, HX Wang, QH Sun, JB Landis, J Wen, HF Wang. 2022. Nuclear and plastid phylogenomic analyses provide insights into the reticulate evolution, species delimitation, and biogeography of the Sino-Japanese disjunctive Diabelia (Caprifoliaceae). Journal of Systematics and Evolution 60: 1331–1343.
25 ED Knobloch, DH Mai. 1986. Monographie der Früchte und Samen in der Kreide von Mitteleuropa. Rozpravy Ústředního Ústavu Geologického 47: 1–219.
26 M Lancucka-Srodoniowa. 1967. Two new genera: Hemiptelea Planch. and Weigela Thunb. in the younger Tertiary of Poland. Acta Palaeobotanica 8: 1–17.
27 R Lanfear, B Calcott, SY Ho, S Guindon. 2012. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695–1701.
28 J Li, KG Murray, P Li, K Brown. 2018. Differential diversifications of South American and Eastern Asian disjunct genera Bocconia and Macleaya (Papaveraceae). Journal of Systematics and Evolution 56: 25–34.
29 L Lian, RDC Ortiz, F Jabbour, CF Zhang, XG Xiang, AS Erst, W Wang. 2020. Phylogeny and biogeography of Pachygoneae (Menispermaceae), with consideration of the boreotropical flora hypothesis and resurrection of the genera Cebatha and Nephroia. Molecular Phylogenetics and Evolution 148: 106825.
30 WP Maddison. 2008. Mesquite: A modular system for evolutionary analysis. Evolution 62: 1103–1118.
31 K Mao, G Hao, J Liu, RP Adams, RI Milne. 2010. Diversification and biogeography of Juniperus (Cupressaceae): Variable diversification rates and multiple intercontinental dispersals. New Phytologist 188: 254–272.
32 NJ Matzke. 2013. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 5: 242–248.
33 NJ Matzke. 2014. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology 63: 951–970.
34 Y Miao, M Herrmann, F Wu, X Yan, S Yang. 2012. What controlled Mid–Late Miocene long-term aridification in Central Asia? Global cooling or Tibetan Plateau uplift: A review. Earth-Science Reviews 112: 155–172.
35 T Nakai. 1938. A new classification of the genus Lonicera in the Japanese Empire, together with the diagnoses of new species and new varieties. The Journal of Japanese Botany 14: 359–375.
36 M Nakaji, N Tanaka, T Sugawara. 2015. A molecular phylogenetic study of Lonicera L. (Caprifoliaceae) in Japan based on chloroplast DNA sequences. Acta Phytotaxonomica et Geobotanica 66: 137–151.
37 LT Nguyen, HA Schmidt, A Von Haeseler, BQ Minh. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274.
38 ZL Nie, R Hodel, ZY Ma, G Johnson, C Ren, Y Meng, SM Ickert-Bond, XQ Liu, E Zimmer, J Wen. 2023. Climate-influenced Boreotropical survival and rampant introgressions explain the thriving of New World grapes in the north temperate zone. Journal of Integrative Plant Biology 65: 1183–1203.
39 ZL Nie, J Wen, H Azuma, YL Qiu, H Sun, Y Meng, WB Sun, EA Zimmer. 2008. Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets. Molecular Phylogenetics and Evolution 48: 1027–1040.
40 JB Pease, JW Brown, JF Walker, CE Hinchliff, SA Smith. 2018. Quartet sampling distinguishes lack of support from conflicting support in the green plant tree of life. American Journal of Botany 105: 385–403.
41 A Rambaut, AJ Drummond, D Xie, G Baele, MA Suchard. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904.
42 A Rehder. 1903. Synopsis of the genus Lonicera. Missouri: Botanical Garden. 14th Annual Report. 27–323.
43 JM Santorum, D Darriba, GL Taboada, D Posada. 2014. Jmodeltest. org: Selection of nucleotide substitution models on the cloud. Bioinformatics 30: 1310–1311.
44 R Sessa, G Seano, L Di Blasio, PA Gagliardi, C Isella, E Medico, L Primo. 2012. The miR-126 regulates angiopoietin-1 signaling and vessel maturation by targeting p85β. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1823: 1925–1935.
45 SA Smith. 2008. Evolving biogeography: New methods and their application in the plant clade Lonicera. New Haven: Yale University.
46 SA Smith. 2009. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae. Journal of Biogeography 36: 2324–2337.
47 SA Smith, MJ Donoghue. 2010. Combining historical biogeography with niche modeling in the Caprifolium clade of Lonicera (Caprifoliaceae, Dipsacales). Systematic Biology 59: 322–341.
48 RA Spicer, T Su, PJ Valdes, A Farnsworth, FX Wu, G Shi, Z Zhou. 2021. Why “the uplift of the Tibetan Plateau” is a myth. National Science Review 8: nwaa091.
49 C Su, L Duan, PL Liu, J Liu, ZY Chang, J Wen. 2021. Chloroplast phylogenomics and character evolution of eastern Asian Astragalus (Leguminosae): Tackling the phylogenetic structure of the largest genus of flowering plants in Asia. Molecular Phylogenetics and Evolution 156: 107025.
50 QH Sun, DF Morales-Briones, HX Wang, JB Landis, J Wen, HF Wang. 2022. Phylogenomic analyses of the East Asian endemic Abelia (Caprifoliaceae) shed insights into the temporal and spatial diversification history with widespread hybridization. Annals of Botany 129: 201–216.
51 QH Sun, DF Morales-Briones, HX Wang, JB Landis, J Wen, HF Wang. 2023. Target sequence capture data shed light on the deeper evolutionary relationships of subgenus Chamaecerasus in Lonicera (Caprifoliaceae). Molecular Phylogenetics and Evolution 184: 107808.
52 N Theis, MJ Donoghue, J Li. 2008. Phylogenetics of the Caprifolieae and Lonicera (Dipsacales) based on nuclear and chloroplast DNA sequences. Systematic Botany 33: 776–783.
53 BH Tiffney, SR Manchester. 2001. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. International Journal of Plant Sciences 162: S3–S17.
54 HF Wang, S Landrein, WP Dong, ZL Nie, K Kondo, T Funamoto, J Wen, SL Zhou. 2015. Molecular phylogeny and biogeographic diversification of Linnaeoideae (Caprifoliaceae s. l.) disjunctly distributed in Eurasia, North America and Mexico. PLoS One 10: 1–26.
55 HX Wang, H Liu, MJ Moore, S Landrein, B Liu, ZX Zhu, HF Wang. 2020. Plastid phylogenomic insights into the evolution of the Caprifoliaceae s.l. (Dipsacales). Molecular Phylogenetics and Evolution 142: 106641.
56 HX Wang, DF Morales-Briones, MJ Moore, J Wen, HF Wang. 2021. A phylogenomic perspective on gene tree conflict and character evolution in Caprifoliaceae using target enrichment data, with Zabelioideae recognized as a new subfamily. Journal of Systematics and Evolution 59: 897–914.
57 J Wen. 1999. Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annual Review of Ecology and Systematics 30: 421–455.
58 J Wen. 2001. Evolution of eastern Asian–eastern North American biogeographic disjunctions: A few additional issues. International Journal of Plant Sciences 162: S117–S122.
59 J Wen, SM Ickert-Bond. 2009. Evolution of the Madrean–Tethyan disjunctions and the North and South American amphitropical disjunctions in plants. Journal of Systematics and Evolution 47: 331–348.
60 J Wen, S Ickert-Bond, ZL Nie, R Li. 2010. Timing and modes of evolution of eastern Asian-North American biogeographic disjunctions in seed plants. In: Long M, Gu H, Zhou Z, eds. Darwin's heritage today: Proceedings of the Darwin 2010 Beijing International Conference. Beijing: Higher Education Press. 252–269.
61 J Wen, ZL Nie, SM Ickert-Bond. 2016. Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene. Journal of Systematics and Evolution 54: 469–490.
62 J Wen, ZL Nie, A Soejima, Y Meng. 2007. Phylogeny of Vitaceae based on the nuclear GAI1 gene sequences. Botany 85: 731–745.
63 J Wen, JQ Zhang, ZL Nie, Y Zhong, H Sun. 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Frontiers in Genetics 5: 4.
64 RR Wick, MB Schultz, J Zobel, KE Holt. 2015. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 31: 3350–3352.
65 SD Wu, LJ Zhang, L Lin, SX Yu, ZD Chen, W Wang. 2018. Insights into the historical assembly of global dryland floras: The diversification of Zygophyllaceae. BMC Evolutionary Biology 18: 1–10.
66 Z Wu, H Sun, ZK Zhou, H Peng, DZ Li. 2005. Endemism and its origin and differentiation in the flora of China. Yunnan Plant Research 27: 577–604.
67 M Xia, Y Liu, J Liu, D Chen, Y Shi, Z Chen, D Chen, R Jin, H Chen, HP Comes, S Zhu, P Li, S Jin, Y Qiu. 2022. Out of the Himalaya-Hengduan Mountains: Phylogenomics, biogeography and diversification of Polygonatum Mill. (Asparagaceae) in the Northern Hemisphere. Molecular Phylogenetics and Evolution 169: 107431.
68 L Xie, ZY Yang, J Wen, DZ Li, TS Yi. 2014. Biogeographic history of Pistacia (Anacardiaceae), emphasizing the evolution of the Madrean-Tethyan and the eastern Asian-Tethyan disjunctions. Molecular Phylogenetics and Evolution 77: 136–146.
69 BS Xu. 1988. Lonicera. In: Flora Reipublicae Popularis Sinicae. Beijing: Science Press. 72: 143–259.
70 Q Yang, S Landrein. 2011. Linnaeaceae. In: Wu ZY, Raven PH, Hong DY eds. Flora of China. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. 19: 642–648.
71 Y Yang, C Ye, A Galy, X Fang, Y Xue, Y Liu, R Yang, R Zhang, W Han, W Zheng, X Ruan. 2021. Monsoon-enhanced silicate weathering as a new atmospheric CO2 consumption mechanism contributing to fast late Miocene global cooling. Paleoceanography and Paleoclimatology 36: e2020PA004008.
72 T Yang, LM Lu, W Wang, JH Li, SR Manchester, J Wen, ZD Chen. 2018. Boreotropical range expansion and long-distance dispersal explain two amphi-Pacific tropical disjunctions in Sabiaceae. Molecular Phylogenetics and Evolution 124: 181–191.
73 X Yao, Y Song, JB Yang, YH Tan, RT Corlett. 2021. Phylogeny and biogeography of the hollies (Ilex L., Aquifoliaceae). Journal of Systematics and Evolution 59: 73–82.
74 WQ Ye, SS Zhu, HP Comes, T Yang, L Lian, W Wang, Y Qiu, X Xia. 2022. Phylogenomics and diversification drivers of the Eastern Asian–Eastern North American disjunct Podophylloideae. Molecular Phylogenetics and Evolution 169: 107427.
75 Y Yu, AJ Harris, C Blair, X He. 2015. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Molecular Phylogenetics and Evolution 87: 46–49.
76 JQ Zhang, SY Meng, JA Allen, J Wen, GY Rao. 2014. Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae). Molecular Phylogenetics and Evolution 77: 147–158.
77 ML Zhang, Y Kang, Y Zhong, SC Sanderson. 2012. Intense uplift of the Qinghai Tibetan Plateau triggered rapid diversification of Phyllolobium (Leguminosae) in the Late Cenozoic. Plant Ecology and Diversity 5: 491–499.
78 Q Zhang, RH Ree, N Salamin, Y Xing, D Silvestro. 2022. Fossil-informed models reveal a boreotropical origin and divergent evolutionary trajectories in the walnut family (Juglandaceae). Systematic Biology 71: 242–258.
79 SL Zhou, C Xu, J Liu, Y Yu, P Wu, T Cheng, DY Hong. 2021a. Out of the Pan-Himalaya: Evolutionary history of the Paeoniaceae revealed by phylogenomics. Journal of Systematics and Evolution 59: 1170–1182.
80 WB Zhou, QY Xiang, J Wen. 2021b. Phylogenomics, biogeography, and evolution of morphology and ecological niche of the eastern Asian-eastern North American Nyssa (Nyssaceae). Journal of Systematics and Evolution 58: 571–603.
PDF

Accesses

Citations

Detail

Sections
Recommended

/