Phylogenetic diversity and regionalization in the temperate arid zone

Ryan A. Folk , Aliasghar A. Maassoumi , Carolina M. Siniscalchi , Heather R. Kates , Douglas E. Soltis , Pamela S. Soltis , Michael B. Belitz , Robert P. Guralnick

Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (6) : 1201 -1217.

PDF
Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (6) : 1201 -1217. DOI: 10.1002/jse.13077
Research Article

Phylogenetic diversity and regionalization in the temperate arid zone

Author information +
History +
PDF

Abstract

Astragalus (Fabaceae) is astoundingly diverse in temperate, cold arid regions of Earth, positioning this group as a model clade for investigating the distribution of plant diversity in the face of environmental challenges. Here, we identify the spatial distribution of diversity and endemism in Astragalus using species distribution models for 752 species and a phylogenetic tree comprising 847 species. We integrated these to map centers of species richness (SR) and relative phylogenetic diversity (RPD) and used randomization approaches to investigate centers of endemism. We also used clustering methods to identify phylogenetic regionalizations. We then assembled predictor variables of current climate conditions to test environmental factors predicting these phylogenetic diversity results, especially temperature and precipitation seasonality. We find that SR centers are distributed globally at temperate middle latitudes in arid regions, but the Mediterranean Basin is the most important center of RPD. Endemism centers also occur globally, but Iran represents a key endemic area with a concentration of both paleo- and neoendemism. Phylogenetic regionalization recovered an east-west gradient in Eurasia and an amphitropical disjunction across North and South America; American phyloregions are overall most closely related to east and central Asia. SR, RPD, and lineage turnover are driven mostly by precipitation and seasonality, but endemism is driven primarily by diurnal temperature variation. Endemism and regionalization results point to western Asia and especially Iran as a biogeographic gateway between Europe and Asia. RPD and endemism highlight the importance of temperature and drought stress in determining plant diversity and endemism centers.

Keywords

Astragalus / biogeography / CANAPE / Iran / phyloregion / spatial phylogenetics

Cite this article

Download citation ▾
Ryan A. Folk, Aliasghar A. Maassoumi, Carolina M. Siniscalchi, Heather R. Kates, Douglas E. Soltis, Pamela S. Soltis, Michael B. Belitz, Robert P. Guralnick. Phylogenetic diversity and regionalization in the temperate arid zone. Journal of Systematics and Evolution, 2024, 62(6): 1201-1217 DOI:10.1002/jse.13077

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AllenJM,Germain-Aubrey CC,BarveN,NeubigKM,MajureLC, LaffanSW,Mishler BD,OwensHL,SmithSA,WhittenWM, AbbottJR,Soltis DE,GuralnickR,SoltisPS. 2019. Spatial phylogenetics of florida vascular plants: The effects of calibration and uncertainty on diversity estimates. iScience 11:57–70.

[2]

AmatulliG,DomischS, TuanmuM-N,Parmentier B,RanipetaA,MalczykJ,JetzW. 2018. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data 5(1):180040.

[3]

AminiE,Kazempour-Osaloo S,MaassoumiAA,Zare-MaivanH. 2019. Phylogeny, biogeography and divergence times of Astragalus section Incani DC. (Fabaceae) inferred from nrDNA ITS and plastid rpl32-trnL (UAG) sequences. Nordic Journal of Botany 37(2):e02059.

[4]

ArakakiM,Christin P-A,NyffelerR,LendelA,EggliU, OgburnRM,Spriggs E,MooreMJ,EdwardsEJ. 2011. Contemporaneous recent radiations of the world’s major succulent plant lineages. Proceedings of the National Academy of the United States of America 108:8379–8384.

[5]

AzaniN,BruneauA, WojciechowskiMF,ZarreS. 2017. Molecular phylogenetics of annual Astragalus (Fabaceae) and its systematic implications. Botanical Journal of the Linnean Society 184(3):347–365.

[6]

AzaniN,BruneauA, WojciechowskiMF,ZarreS. 2019. Miocene climate change as a driving force for multiple origins of annual species in Astragalus (Fabaceae, Papilionoideae). Molecular Phylogenetics and Evolution 137:210–221.

[7]

BarnebyRC. 1964. Atlas of North American Astragalus. Memoirs of the New York Botanical Garden 13:1–1188.

[8]

BatjesNH,RibeiroE, van OostrumA,LeenaarsJ,HenglT, Mendes de JesusJ. 2017. WoSIS: Providing standardised soil profile data for the world. Earth System Science Data 9(1):1–14.

[9]

BlaimerBB,SantosBF, CruaudA,Gates MW,KulaRR,MikóI,RasplusJ-Y, SmithDR,Talamas EJ,BradySG,BuffingtonML. 2023. Key innovations and the diversification of Hymenoptera. Nature Communications 14(1):1212.

[10]

CartaA,PeruzziL, Ramírez-BarahonaS. 2022. A global phylogenetic regionalization of vascular plants reveals a deep split between Gondwanan and Laurasian biotas. New Phytologist 233(3):1494–1504.

[11]

Cavender-BaresJ. 2019. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytologist 221(2):669–692.

[12]

Cheikh AlbassatnehM,Escudero M,MonnetA-C,ArroyoJ,Bacchetta G,BagnoliF,DimopoulosP,HampeA, LericheA,Médail F,NikolicT,PongerL,Vendramin GG,FadyB. 2021. Spatial patterns of genus-level phylogenetic endemism in the tree flora of Mediterranean Europe. Diversity & Distributions 27:913–928.

[13]

ComstockJP,Ehleringer JR. 1992. Plant adaptation in the Great Basin and Colorado Plateau. The Great Basin Naturalist 52:195–215.

[14]

DaruBH,ElliottTL, ParkDS,Davies TJ. 2017. Understanding the processes underpinning patterns of phylogenetic regionalization. Trends in Ecology & Evolution 32:845–860.

[15]

Davis RaboskyAR,CoxCL, RaboskyDL,Title PO,HolmesIA,FeldmanA,McGuireJA. 2016. Coral snakes predict the evolution of mimicry across New World snakes. Nature Communications 7(1):11484.

[16]

EarlC,BelitzMW, LaffanSW,Barve V,BarveN,SoltisDE,AllenJM, SoltisPS,Mishler BD,KawaharaAY,GuralnickR. 2021. Spatial phylogenetics of butterflies in relation to environmental drivers and angiosperm diversity across North America. iScience 24(4):102239.

[17]

EconomoEP,NarulaN, FriedmanNR,Weiser MD,GuénardB. 2018. Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nature Communications 9(1):1778.

[18]

EdwardsEJ,OsborneCP, StrömbergCAE,SmithSA,BondWJ, ChristinPA,Cousins AB,DuvallMR,FoxDL,Freckleton RP,GhannoumO,HartwellJ,HuangY, JanisCM,Keeley JE,KelloggEA,KnappAK,LeakeyADB, NelsonDM,Saarela JM,SageRF,SalaOE,SalaminN, StillCJ,Tipple B. 2010. The origins of C4Grasslands: Integrating evolutionary and ecosystem science. Science 328(5978):587–591.

[19]

FickSE,HijmansRJ. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12):4302–4315.

[20]

FolkRA,Charboneau J,BelitzM,SinghT,KatesHR, SoltisDE,Soltis PS,GuralnickRP,SiniscalchiCM,2024a. Anatomy of a mega-radiation: Biogeography niche evolution in Astragalus. American Journal of Botany 111:e16299.

[21]

FolkRA,KatesHR, LaFranceR,Soltis DE,SoltisPS,GuralnickRP,2021a. High-throughput methods for efficiently building massive phylogenies from natural history collections. Applications in Plant Sciences 9:e11410.

[22]

FolkRA,Siniscalchi CM,DobyJ,KatesH,Manchester SR,SoltisPS,SoltisDE,Guralnick RP,BelitzM,2024b. Spatial phylogenetics of Fagales: Investigating the history of temperate forests. Journal of Biogeography.

[23]

FolkRA,Siniscalchi CM,SoltisDE. 2020. Angiosperms at the edge: Extremity, diversity, and phylogeny. Plant, Cell & Environment 43:2871–2893.

[24]

FolkRA,StubbsRL, Engle-WryeNJ,SoltisDE,OkuyamaY,2021b. Biogeography habitat evolution of Saxifragaceae, with a revision of generic limits a new tribal system. Taxon 70:263–285.

[25]

FolkRA,StubbsRL, MortME,Cellinese N,AllenJM,SoltisPS,SoltisDE, GuralnickRP. 2019. Rates of niche phenotype evolution lag behind diversification in a temperate radiation. Proceedings of the National Academy of Sciences of the United States of America 116:10874–10882.

[26]

FolkRA,SunM, SoltisPS,Smith SA,SoltisDE,GuralnickRP. 2018. Challenges of comprehensive taxon sampling in comparative biology: Wrestling with rosids. American Journal of Botany 105(3):433–445.

[27]

FrodinDG. 2004. History and concepts of big plant genera. Taxon 53(3):753–776.

[28]

GBIF.org. 2020. GBIF occurrence download. https://doi.org/10.15468/dl.yfddmm;

[29]

GillettJB. 1964. Astragalus L. (Leguminosae) in the highlands of tropical Africa. Kew Bulletin 17(3):413–423.

[30]

HardionL,DumasPJ, Abdel-SamadF,Bou Dagher KharratM,Surina B,AffreL,MédailF,Bacchetta G,BaumelA. 2016. Geographical isolation caused the diversification of the Mediterranean thorny cushion-like Astragalus L. sect. Tragacantha DC. (Fabaceae). Molecular Phylogenetics and Evolution 97:187–195.

[31]

HenglT,Mendes de Jesus J,HeuvelinkGBM,Ruiperez GonzalezM,Kilibarda M,BlagotićA,ShangguanW,WrightMN, GengX,Bauer-Marschallinger B,GuevaraMA,VargasR,MacMillan RA,BatjesNH,LeenaarsJGB,RibeiroE, WheelerI,Mantel S,KempenB. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PloS One 12(2):e0169748.

[32]

HuH,YeJ, LiuB,MaoL, SmithSA,Barrett RL,SoltisPS,SoltisDE,ChenZ, LuL. 2022. Temporal and spatial comparisons of angiosperm diversity between eastern Asia and North America. National Science Review 9(6):nwab199.

[33]

HughesC,Eastwood R. 2006. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of the United States of America 103:10334–10339.

[34]

JohnstonIM. 1947. Astragalus in Argentina, Bolivia and Chile. Journal of the Arnold Arboretum 28(3):336–374.

[35]

JohnsonMG,GardnerEM, LiuY,MedinaR, GoffinetB,Shaw AJ,ZeregaNJC,WickettNJ. 2016. HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Applications in Plant Sciences 4(7):apps.1600016.

[36]

KatesHR,O’Meara BC,LaFranceR,StullGW,JamesEK, CondeD,Liu S,TianQ,YiT,KirstM, AnéJ-M,SoltisDE,Guralnick RP,SoltisPS,FolkRA,2024 [accepted]. Two shifts in evolutionary lability underlie independent gains losses of root-nodule symbiosis in a single clade of plants. Nature Communications.

[37]

OsalooSK,Maassoumi AA,MurakamiN. 2005. Molecular systematics of the Old World Astragalus (Fabaceae) as inferred from nrDNA ITS sequence data. Brittonia 57(4):367–381.

[38]

KholinaAB,Kozyrenko MM,ArtyukovaEV,SandanovDV,Andrianova EA. 2016. Phylogenetic relationships of the species of Oxytropis DC. subg. Oxytropis and Phacoxytropis (Fabaceae) from Asian Russia inferred from the nucleotide sequence analysis of the intergenic spacers of the chloroplast genome. Russian Journal of Genetics 52(8):780–793.

[39]

KraftNJB,BaldwinBG, AckerlyDD. 2010. Range size, taxon age hotspots of neoendemism in the California flora. Diversity & Distributions 16:403–413.

[40]

LaffanSW,Lubarsky E,RosauerDF. 2010. Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography 33(4):643–647.

[41]

LaffanSW,RosauerDF, Di VirgilioG,MillerJT,González-Orozco CE,KnerrN,ThornhillAH,MishlerBD. 2016. Range-weighted metrics of species and phylogenetic turnover can better resolve biogeographic transition zones. Methods in Ecology and Evolution 7(5):580–588.

[42]

LagomarsinoLP,Condamine FL,AntonelliA,MulchA,DavisCC. 2016. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytologist 210(4):1430–1442.

[43]

LiowLH,UyedaJ, HuntG. 2022. Cross-disciplinary information for understanding macroevolution. Trends in Ecology & Evolution 38:250–260.

[44]

LiuK,BaskinJM, BaskinCC,Bu H,DuG,MaM. 2013. Effect of diurnal fluctuating versus constant temperatures on germination of 445 species from the eastern Tibet Plateau. PloS One 8(7):e69364.

[45]

LuL-M,MaoL-F, YangT,Ye J-F,LiuB,LiH-L,SunM, MillerJT,Mathews S,HuH-H,NiuYT,PengD-X, ChenY-H,Smith SA,ChenM,XiangK-L,LeC-T, DangV-C,Lu A-M,SoltisPS,SoltisDE,LiJ-H, ChenZ-D. 2018. Evolutionary history of the angiosperm flora of China. Nature 554(7691):234–238.

[46]

MaassoumiAA. 2020. A Checklist of Astragalus in the world: New grouping, new changes and additional species with augmented data. Tehran: Research Institute of Forests and Rangelands, Agricultural Research and Education Organization.

[47]

MaassoumiAA,AshouriP. 2022. The hotspots and conservation gaps of the mega genus Astragalus (Fabaceae) in the Old-World. Biodiversity and Conservation 31(8-9):2119–2139.

[48]

MeyerC,KreftH, GuralnickR,Jetz W. 2015. Global priorities for an effective information basis of biodiversity distributions. Nature Communications 6(1):8221.

[49]

MeyersZJ,Ickert-Bond SM,LaMesjerantR. 2013. A survey of seed coat morphology in Oxytropis, sects. Arctobia,Baicalia,Glaeocephala,Mesogaea, and Orobia (Fabaceae) from Alaska. Journal of the Botanical Research Institute of Texas 7:391–404.

[50]

MishlerBD,Guralnick R,SoltisPS,SmithSA,SoltisDE, BarveN,Allen JM,LaffanSW. 2020. Spatial phylogenetics of the North American flora. Journal of Systematics and Evolution 58(4):393–405.

[51]

MishlerBD,KnerrN, González-OrozcoCE,ThornhillAH,LaffanSW, MillerJT. 2014. Phylogenetic measures of biodiversity and neo-and paleo-endemism in Australian Acacia. Nature Communications 5(1):4473.

[52]

Molina-VenegasR,Aparicio A,LavergneS,ArroyoJ. 2015. The building of a biodiversity hotspot across a land-bridge in the Mediterranean. Proceedings of the Royal Society B: Biological Sciences 282:20151116.

[53]

Muñoz-RodríguezP,WoodJRI,WellsT, CarruthersT,Sumadijaya A,ScotlandRW. 2023. The challenges of classifying big genera such as Ipomoea. Taxon 72:1201–1215.

[54]

MuscarellaR,GalantePJ, Soley-GuardiaM,BoriaRA,KassJM, UriarteM,Anderson RP. 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity forMaxentecological niche models. Methods in Ecology and Evolution 5(11):1198–1205.

[55]

MysterJ,MoeR. 1995. Effect of diurnal temperature alternations on plant morphology in some greenhouse crops—A mini review. Scientia Horticulturae 62(4):205–215.

[56]

QianH,DaiZ, WangJ. 2023. Geographic patterns and ecological correlates of the mean genus age of liverworts in regional floras across China. Journal of Biogeography 50:1817–1825.

[57]

RamsayPM. 2001. Diurnal temperature variation in the major growth forms of an Ecuadorian páramo plant community. In: Ramsay PM ed. The ecology of Volcán Chiles: High-Altitude ecosystems on the Ecuador-Colombia border,101–112. Plymouth: Pebble and Shelll Publications.

[58]

RavenPH. 1963. Amphitropical relationships in the floras of North and South America. The Quarterly Review of Biology 38(2):151–177.

[59]

RingelbergJJ,KoenenEJM, SauterB,Aebli A,RandoJG,IganciJR,de Queiroz LP,MurphyDJ,GaudeulM,BruneauA, LuckowM,Lewis GP,MillerJT,SimonMF,Jordão LSB,MoralesM,BaileyCD,Nageswara-Rao M,NichollsJA,LoiseauO,Pennington RT,DexterKG,ZimmermannNE,HughesCE. 2023. Precipitation is the main axis of tropical plant phylogenetic turnover across space and time. Science Advances 9(7):eade4954.

[60]

SamadFA,BaumelA, JuinM,Pavon D,Siljak-YakovlevS,MédailF,Bou Dagher Kharrat M. 2014. Phylogenetic diversity and genome sizes of Astragalus (Fabaceae) in the Lebanon biogeographical crossroad. Plant Systematics and Evolution 300(5):819–830.

[61]

SandersonMJ,Wojciechowski MF. 1996. Diversification rates in a temperate legume clade: Are there ‘so many species’ of Astragalus (Fabaceae)? American Journal of Botany 83(11):1488–1502.

[62]

SchersonRA,Thornhill AH,Urbina-CasanovaR,FreymanWA,Pliscoff PA,MishlerBD. 2017. Spatial phylogenetics of the vascular flora of Chile. Molecular Phylogenetics and Evolution 112:88–95.

[63]

SchersonRA,VidalR, SandersonMJ. 2008. Phylogeny, biogeography, and rates of diversification of New World Astragalus (Leguminosae) with an emphasis on South American radiations. American Journal of Botany 95(8):1030–1039.

[64]

SimpsonMG,JohnsonLA, VillaverdeT,Guilliams CM. 2017. American amphitropical disjuncts: Perspectives from vascular plant analyses and prospects for future research. American Journal of Botany 104(11):1600–1650.

[65]

SinghalS,ColliGR, GrundlerMR,Costa GC,PratesI,RaboskyDL. 2022. No link between population isolation speciation rate in squamate reptiles. Proceedings of the National Academy of the United States of America 119:e2113388119.

[66]

SoltisPS,FolkRA, SoltisDE. 2019. Darwin review: Angiosperm phylogeny evolutionary radiations. Proceedings of the Royal Society B: Biological Sciences 286:20190099.

[67]

SpalinkD,KriebelR, LiP,PaceMC, DrewBT,Zaborsky JG,RoseJ,DrummondCP,FeistMA, AlversonWS,Waller DM,CameronKM,GivnishTJ,SytsmaKJ. 2018. Spatial phylogenetics reveals evolutionary constraints on the assembly of a large regional flora. American Journal of Botany 105(11):1938–1950.

[68]

SuC,DuanL, LiuP,LiuJ, ChangZ,Wen J. 2021. Chloroplast phylogenomics and character evolution of eastern Asian Astragalus (Leguminosae):Tackling the phylogenetic structure of the largest genus of flowering plants in Asia. Molecular Phylogenetics and Evolution 156:107025.

[69]

SunJ,NiX, BiS,WuW, YeJ,MengJ, WindleyBF. 2014. Synchronous turnover of flora, fauna and climate at the Eocene–Oligocene Boundary in Asia. Scientific Reports 4(1):7463.

[70]

ThornhillAH,BaldwinBG, FreymanWA,Nosratinia S,KlingMM,Morueta-HolmeN,MadsenTP, AckerlyDD,Mishler BD. 2017. Spatial phylogenetics of the native California flora. BMC Biology 15(1):96.

[71]

ThornhillAH,MishlerBD, KnerrNJ,González-Orozco CE,CostionCM,CraynDM,LaffanSW, MillerJT. 2016. Continental-scale spatial phylogenetics of Australian angiosperms provides insights into ecology, evolution and conservation. Journal of Biogeography 43(11):2085–2098.

[72]

TroudetJ,Grandcolas P,BlinA,Vignes-LebbeR,Legendre F. 2017. Taxonomic bias in biodiversity data and societal preferences. Scientific Reports 7(1):9132.

[73]

TuanmuM-N,JetzW. 2014. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Global Ecology and Biogeography 23(9):1031–1045.

[74]

WangQ,HuangJ, ZangR,Li Z,El-KassabyYA. 2022. Centres of neo-and paleo-endemism for Chinese woody flora and their environmental features. Biological Conservation 276:109817.

[75]

WojciechowskiMF,Sanderson MJ,BaldwinBG,DonoghueMJ. 1993. Monophyly of aneuploid Astragalus (Fabaceae):Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. American Journal of Botany 80(6):711–722.

[76]

WojciechowskiMF,Sanderson MJ,HuJ-M. 1999. Evidence on the monophyly of Astragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNA ITS and chloroplast DNA trnL intron data. Systematic Botany 24(3):409–437.

[77]

YeJ,LuL, LiuB,YangT, ZhangJ,Hu H,LiR,LuA,LiuH, MaoL,ChenZ. 2019. Phylogenetic delineation of regional biota: A case study of the Chinese flora. Molecular Phylogenetics and Evolution 135:222–229.

[78]

ZhangC,RabieeM, SayyariE,Mirarab S. 2018. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19(S6):153.

RIGHTS & PERMISSIONS

2024 The Authors. Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/