Multiplicity of Solutions for a Class of Critical Choquard Equation in a Bounded Domain

Yongpeng CHEN , Baoxia JIN

Journal of Partial Differential Equations ›› 2025, Vol. 37 ›› Issue (4) : 446 -461.

PDF
Journal of Partial Differential Equations ›› 2025, Vol. 37 ›› Issue (4) :446 -461. DOI: 10.4208/jpde.v38.n4.4
research-article

Multiplicity of Solutions for a Class of Critical Choquard Equation in a Bounded Domain

Author information +
History +
PDF

Abstract

In this paper, we consider the following critical Choquard equation

$ -\Delta u=\mu f(x)|u|^{p-2} u+\left(\int_{\Omega} \frac{g(y)|u(y)|^{6-v}}{|x-y|^{v}} \mathrm{~d} y\right) g(x)|u|^{4-v} u, \quad x \in \Omega,$

where µ>0 is a parameter, ν∈(0,3),p∈(4,6) and f,g are continuous functions. For µ small enough, by using Lusternik-Schnirelmann category theory, we establish a relationship between the number of solutions and the category of the global maximum set of g.

Keywords

Choquard equation / category theory / critical exponent / multiple solutions

Cite this article

Download citation ▾
Yongpeng CHEN, Baoxia JIN. Multiplicity of Solutions for a Class of Critical Choquard Equation in a Bounded Domain. Journal of Partial Differential Equations, 2025, 37(4): 446-461 DOI:10.4208/jpde.v38.n4.4

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/