Strong Instability of Standing Waves for a Type of Hartree Equations

Chenglin WANG , Jian ZHANG

Journal of Partial Differential Equations ›› 2025, Vol. 38 ›› Issue (2) : 142 -154.

PDF
Journal of Partial Differential Equations ›› 2025, Vol. 38 ›› Issue (2) : 142 -154. DOI: 10.4208/jpde.v38.n2.2
research-article

Strong Instability of Standing Waves for a Type of Hartree Equations

Author information +
History +
PDF

Abstract

In this paper, we study the following three-dimensional Schrödinger equation with combined Hartree-type and power-type nonlinearities

$i \partial_{t} \psi+\Delta \psi+\left(|x|^{-2} *|\psi|^{2}\right) \psi+|\psi|^{p-1} \psi=0$

with 1<p<5. Using standard variational arguments, the existence of ground state solutions is obtained. And then we prove that when p≥3, the standing wave solution $e^{i \omega t} u_{\omega}(x)$ is strongly unstable for the frequency ω>0.

Keywords

Hartree equation / standing wave / variational arguments / strong instability / blowup

Cite this article

Download citation ▾
Chenglin WANG, Jian ZHANG. Strong Instability of Standing Waves for a Type of Hartree Equations. Journal of Partial Differential Equations, 2025, 38(2): 142-154 DOI:10.4208/jpde.v38.n2.2

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

52

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/