$C^{1, \alpha}$-Regularity for p-Harmonic Functions in SU(3)

Chengwei YU

Journal of Partial Differential Equations ›› 2024, Vol. 37 ›› Issue (4) : 427 -466.

PDF
Journal of Partial Differential Equations ›› 2024, Vol. 37 ›› Issue (4) : 427 -466. DOI: 10.4208/jpde.v37.n4.5
research-article

$C^{1, \alpha}$-Regularity for p-Harmonic Functions in SU(3)

Author information +
History +
PDF

Abstract

This artical concerns the $C_{\mathrm{loc}}^{1, \alpha}$-regularity of weak solutions u to the degenerate subelliptic p-Laplacian equation

$\Delta_{\mathcal{H}, p} u(x)=\sum_{i=1}^{6} X_{i}^{*}\left(\left|\nabla_{\mathcal{H}} u\right|^{p-2} X_{i} u\right)=0,$

where $\mathcal{H}$ is the orthogonal complement of a Cartan subalgebra in SU(3) with the orthonormal basis composed of the vector fields X1,...,X6. When $1<p<2$, we prove that $\nabla_{\mathcal{H}} u \in C_{\mathrm{loc}}^{\alpha}$.

Keywords

p-Laplacian equation / $C^{1, \alpha}$-regularity / SU(3) / Caccioppoli inequality / De Giorgi / p-harmonic function

Cite this article

Download citation ▾
Chengwei YU. $C^{1, \alpha}$-Regularity for p-Harmonic Functions in SU(3). Journal of Partial Differential Equations, 2024, 37(4): 427-466 DOI:10.4208/jpde.v37.n4.5

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/