Ground State Solutions for Kirchhoff Equations via Modified Nehari-Pankov Manifold

Biyun TANG , Yongyi LAN

Journal of Partial Differential Equations ›› 2024, Vol. 37 ›› Issue (4) : 377 -401.

PDF
Journal of Partial Differential Equations ›› 2024, Vol. 37 ›› Issue (4) : 377 -401. DOI: 10.4208/jpde.v37.n4.2
research-article

Ground State Solutions for Kirchhoff Equations via Modified Nehari-Pankov Manifold

Author information +
History +
PDF

Abstract

We investigate the Kirchhoff type elliptic problem

$\left(a+b \int_{\mathbb{R}^{N}}\left[|\nabla u|^{2}+V(x) u^{2}\right] \mathrm{d} x\right)[-\Delta u+V(x) u]=f(x, u), \quad x \in \mathbb{R}^{N}$

where both V and f are periodic in x, 0 belongs to a spectral gap of −Δ+V. Under suitable assumptions on V and f with more general conditions, we prove the existence of ground state solutions and infinitely many geometrically distinct solutions.

Keywords

Kirchhoff equation / Nehari-Pankov manifold / ground state solution / multiplicity of solutions

Cite this article

Download citation ▾
Biyun TANG, Yongyi LAN. Ground State Solutions for Kirchhoff Equations via Modified Nehari-Pankov Manifold. Journal of Partial Differential Equations, 2024, 37(4): 377-401 DOI:10.4208/jpde.v37.n4.2

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/