Al2O3 Content Dependency on Microstructure, Crystallization Behavior and Mechanical Properties of Li2O-Al2O3-SiO2 Glass-ceramics

Danni Li , Yuyan Cai , Chi Zheng , Xuhe Jia , Mengshuo Guo , Jihong Zhang , Jun Xie , Jianjun Han

Journal of Wuhan University of Technology Materials Science Edition ›› 2026, Vol. 41 ›› Issue (1) : 72 -83.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2026, Vol. 41 ›› Issue (1) :72 -83. DOI: 10.1007/s11595-026-3226-9
Advanced Materials
research-article

Al2O3 Content Dependency on Microstructure, Crystallization Behavior and Mechanical Properties of Li2O-Al2O3-SiO2 Glass-ceramics

Author information +
History +
PDF

Abstract

In current research, Li2O-Al2O3-SiO2 glass-ceramics were prepared by conventional melt-quenching and subsequent heat treatment method. The effect of Al2O3 content on microstructures, thermal properties, crystallization behaviours and mechanical properties were investigated. FTIR, Raman spectroscopy and nuclear magnetic resonance spectroscopy microstructure analysis showed that the silico-oxygen network was damaged, while the increase of [AlO4] content repaired the glass network, and finally made the glass network have better connectivity, with the decrease of SiO2. The thermal analysis confirmed the increasing glass transition and crystallization temperatures from growing Al2O3 content. In addition, different crystal phases can be precipitated in the glass matrix, such as LiAlSi4O10, Li2Si2O5 in glass with low Al2O3 content, the combination of LixAlxSi1−xO2, LiAlSi3O8, Li2SiO3 in glass with intermediate Al2O3 content, and the combination of LiAlSi2O6, SiO2 in glass with high Al2O3 content. The hardness of as-prepared glass gradually increases with the increase of the Al2O3 content. The Vickers hardness of the glass-ceramics is highly dependent on the Al2O3 content in the glass and the heat treatment temperatures, reaching a maximum of 10.11 GPa. Scanning electron microscope images show that the crystals change from spherical to massive and finally to sheet. The change of glass structure, crystal phase and morphology is the main reason for the different mechanical properties.

Keywords

microstructure / glass-ceramics / crystallization / hardness

Cite this article

Download citation ▾
Danni Li, Yuyan Cai, Chi Zheng, Xuhe Jia, Mengshuo Guo, Jihong Zhang, Jun Xie, Jianjun Han. Al2O3 Content Dependency on Microstructure, Crystallization Behavior and Mechanical Properties of Li2O-Al2O3-SiO2 Glass-ceramics. Journal of Wuhan University of Technology Materials Science Edition, 2026, 41(1): 72-83 DOI:10.1007/s11595-026-3226-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Höland W, Beall G H. Glass-Ceramic Technology, 20122nd EditionHoboken, John Wiley & Sons, Inc. M]

[2]

Serbena FC, Soares VO, Peitl O, et al.. Internal Residual Stresses in Sintered and Commercial Low Expansion Li2O-Al2O3-SiO2 Glass-Ceramics[J]. Journal of the American Ceramic Society, 2011, 94(4): 1 206-1 214

[3]

Kumar A, Chakrabarti A, Shekhawat MS, et al.. Transparent Ultra-Low Expansion Lithium Aluminosilicate Glass-Ceramics: Crystallization Kinetics, Structural and Optical Properties[J]. Thermochimica Acta, 2019, 676: 155-163

[4]

Zanotto ED. A Bright Future for Glass-Ceramics[J]. American Ceramic Society Bulletin, 2010, 89(8): 19-27

[5]

Venkateswaran C, Sreemoolanadhan H, Vaish R. Lithium Aluminosilicate (LAS) Glass-Ceramics: A Review of Recent Progress[J]. International Materials Reviews, 2021, 67(6): 620-657

[6]

Tian S, Zhou M, Shen HY, et al.. Low Thermal Expansion Coefficient LAS Glass-Ceramics with Petalite as the Main Crystal Phase[J]. Journal of Non-Crystalline Solids, 2025, 649: 123 338

[7]

Zheng WH, Gao ZP, Huang M, et al.. Chemical Strengthening of Lithium Aluminosilicate Glass-Ceramic with Different Crystallinity [J]. Journal of Non-Crystalline Solids, 2022, 598: 121 940

[8]

Zheng WH, Li CQ, Yuan J, et al.. The Crystallization and Fracture Toughness of Transparent Glass-Ceramics with Various Al2O3 Additions for Mobile Devices[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2022, 37: 378-384

[9]

Fu L, Engqvist H, Xia W. Glass-Ceramics in Dentistry: A Review[J]. Materials, 2020, 13(5): 1 049

[10]

Soares VO, Serbena FC, Mathias I, et al.. New, Tough and Strong Lithium Metasilicate Dental Glass-Ceramic[J]. Ceramics International, 2021, 47(22 793-2 801

[11]

Soares RS, Monteiro RCC, Lima MMRA, et al.. Crystallization of Lithium Disilicate-Based Multicomponent Glasses-Effect of Silica/Lithia Ratio[J]. Ceramics International, 2015, 41(1): 317-324

[12]

Kolay S, Bhargava P. Role of Mgo in Lowering Glass Transition Temperature and Increasing Hardness of Lithium Silicate Glass and Glass-Ceramics[J]. Ceramics International, 2022, 48(9): 12 699-12 711

[13]

Chen MT, He F, Shi J, et al.. Low Li2O Content Study in Li2O-Al2O3-SiO2 Glass-Ceramics[J]. Journal of the European Ceramic Society, 2019, 39(15): 4 988-4 995

[14]

Shi HN, Hou XH. Effect of MgO on The Crystallization Behavior and Properties of Glass-Ceramics[J]. Transactions of the Indian Ceramic Society, 2018, 77(2): 118-122

[15]

Nnakwo KC, Amadi FE, Mbah CN, et al.. Influence of Heat Treatment Regimes on Crystalline Phase Formation and Physical Properties of Li2O-SiO2-Al2O3 Glass System[J]. Materials Research Express, 2019, 6: 1-11

[16]

Zhang XY, Wang J, Han JJ. Crystallization Kinetics, Structural and Mechanical Properties of Transparent Lithium Aluminosilicate Glass-Ceramics[J]. Journal of Non-Crystalline Solids, 2023, 603: 122 113

[17]

Bai Y, Peng L, Zhu QS, et al.. Non-isothermal Crystallization Kinetics of Stoichiometric Lithium Disilicate-Based Glasses with Al2O3 Additives[J]. Journal of Non-Crystalline Solids, 2016, 446: 116-122

[18]

Ke XF, Shan ZT, Li ZH, et al.. Toward Hard and Highly Crack Resistant Magnesium Aluminosilicate Glasses and Transparent Glass-ceramics[J]. Journal of the American Ceramic Society, 2020, 103: 3 600-3 610

[19]

Thieme K, Riissel C. Nucleation Inhibitors-The Effect of Small Concentrations of Al2O3, La2O3, Or TiO2 on Nucleation and Crystallization of Lithium Disilicate[J]. Journal of the European Ceramic Society, 2014, 34(15): 3 969-3 979

[20]

Keyvani N, Marghussian VK, Rezaie HR, et al.. Effect of Al2O3 Content on Crystallization Behavior, Microstructure, and Mechanical Properties of SiO2-Al2O3-CaO-MgO Glass-Ceramics[J]. International Journal of Applied Ceramic Technology, 2011, 8(1): 203-213

[21]

Cui HN, Yang HC, Wang H, et al.. Crystallization and Microwave Dielectric Properties of Novel CaO-Al2O3-B2O3 Glass-Ceramics with Different Al2O3 Content[J]. Journal of the European Ceramic Society, 2023, 43(16): 7 478-7 484

[22]

Zhao YL, Zhong YH, Chang H, et al.. Luminescent Properties of Tm3+-Dy3+ Co-Doped P2O5-SrO-BaO-B2O3-ZnO Glasses for White LED Applications[J]. Journal of Non-Crystalline Solids, 2021, 573: 121 121

[23]

Aliyah LH, Katrina AT, Hasmaliza M, et al.. Preliminary Study on the Development of New Composition Lithium Aluminosilicate Glass Ceramic[J]. Materials Today: Proceedings, 2019, 17: 946-952

[24]

Kapoor S, Goel A, Pascual MJ, et al.. Thermo-Mechanical Behaviour of Alkali Free Bioactive Glass-Ceramics Co-doped with Strontium and Zinc[J]. Journal of Non-Crystalline Solids, 2013, 375: 74-82

[25]

Hao XJ, Luo ZW, Hu XL, et al.. Effect of Replacement of B2O3 by ZnO on Preparation and Properties of Transparent Cordierite-Based Glass-Ceramics[J]. Journal of Non-Crystalline Solids, 2016, 432: 265-270

[26]

Li YH, Liang KM, Cao JW, et al.. Spectroscopy and Structural State of V4+ Ions in Lithium Aluminosilicate Glass and Glass-Ceramics[J]. Journal of Non-Crystalline Solids, 2010, 356(9–10): 502-508

[27]

Arnault L, Gerland M, Rivière A. Microstructural Study of Two LAS-Type Glass-Ceramics and Their Parent Glass[J]. Journal of Materials Science, 2000, 35(9): 2 331-2 345

[28]

Edén M. Chapter Four-27Al NMR Studies of Aluminosilicate Glasses [J]. Annual Reports on Nmr Spectroscopy, 2015, 86: 237-331

[29]

Furukawa T, Fox KE, White WB. Raman Spectroscopic Investigation of the Structure of Silicate Glasses. III. Raman Intensities and Structural Units in Sodium Silicate Glasses[J]. The Journal of Chemical Physics, 1981, 75: 3 226-3 237

[30]

Ross S, Welsch AM, Behrens H. Lithium Conductivity in Glasses of the Li2O-Al2O3-SiO2 System[J]. Physical Chemistry Chemical Physics, 2015, 17(1): 465-474

[31]

Park SY, Lee SK. High-Resolution Solid-State NMR Study of the Effect of Composition on Network Connectivity and Structural Disorder in Multi-Component Glasses in the Diopside and Jadeite Join: Implications for Structure of Andesitic Melts[J]. Geochimica et Cosmochimica Acta, 2014, 147: 26-42

[32]

Jakobsen HJ, Skibsted J, Bildsøe H, et al.. Magic-Angle Spinning NMR Spectra of Satellite Transitions for Quadrupolar Nuclei in Solids [J]. Journal of Magnetic Resonance, 1989, 85(1): 173-180(1969)

[33]

Karlsson S, Mathew R, Ali S, et al.. Mechanical, Thermal, and Structural Investigations of Chemically Strengthened Na2O-CaO-Al2O3-SiO2 Glasses[J]. Frontiers in Materials, 2022, 9: 953 759

[34]

Gaddam A, Fernandes HR, Tulyaganov DU, et al.. The Roles of P2O5 and SiO2/Li2O Ratio on the Network Structure and Crystallization Kinetics of Non-Stoichiometric Lithium Disilicate Based Glasses[J]. Journal of Non-Crystalline Solids, 2018, 481: 512-521

[35]

Risbu S H, Kirkpatri RJ, Tagliala AP, et al.. Solid-State NMR Evidence of 4-, 5-, and 6-Fold Aluminum Sites in Roller-Quenched SiO2-Al2O3 Glasses[J]. Jounal of the American Ceramic Society, 1987, 70(1): C-10-C-2

[36]

Schmücker M, MacKenzie KJD, Schneider H, et al.. NMR Studies on Rapidly Solidified SiO2 Al2O3 and SiO2 Al2O3 Na2O- Glasses[J]. Journal of Non-Crystalline Solids, 1997, 217(1): 99-105

[37]

Stebbins JF, Kroeker S, Lee SK, et al.. Quantification of Five- and Six-Coordinated Aluminum Ions in Aluminosilicate and Fluoride-Containing Glasses by High-Field, High-Resolution 27Al NMR[J]. Journal of Non-Crystalline Solids, 2000, 275(1–2): 1-6

[38]

Xie J, Tang HR, Wang J, et al.. Network Connectivity and Properties of Non-Alkali Aluminoborosilicate Glasses[J]. Journal of Non-Crystalline Solids, 2018, 481: 403-408

[39]

Fuss T, Moguš-Milanković A, Ray CS, et al.. Ex situ XRD, TEM, IR, Raman and NMR Spectroscopy of Crystallization of Lithium Disilicate Glass at High Pressure[J]. Journal of Non-Crystalline Solids, 2006, 352(38–39): 4 101-4 111

[40]

Horst B. Werkstoffpüfung, 1984, Leipzig, VEB Deutscher Verlag für Grundstoffindustrie[M]

[41]

Gaddam A, Fernandes HR, Tulyaganov DU, et al.. The Roles of P2O5 and SiO2/Li2O Ratio on The Network Structure and Crystallization Kinetics of Nonstoichiometric Lithium Disilicate Based Glasses[J]. Journal of Non-Crystalline Solids, 2018, 481: 512-521

[42]

Zhao T, Li AJ, Qin Y, et al.. Influence of SiO2 Contents on the Microstructure and Mechanical Properties of Lithium Disilicate Glass-Ceramics by Reaction Sintering[J]. Journal of Non-Crystalline Solids, 2019, 512: 148-154

[43]

Huang SF, Zhang B, Huang ZH, et al.. Crystalline Phase Formation, Microstructure and Mechanical Properties of a Lithium Disilicate Glass-Ceramic[J]. Journal of Materials Science, 2013, 48(1): 251-257

[44]

Soares P CJr, Zanotto E D, Fokin V M, et al.. TEM and XRD Study of Early Crystallization of Lithium Disilicate Glasses[J]. Journal of Non-Crystalline Solids, 2003, 331(1–3): 217-227

[45]

Shi J, He F, Xie JL, et al.. Effects of Na2O/BaO Ratio on the Structure and the Physical Properties of Low-Temperature Glass-Ceramic Vitrified Bonds[J]. Ceramics International, 2018, 44(9): 10 871-10 877

[46]

Li ZH, He F, Zhang WT, et al.. Structure and Properties of Glass-Ceramics from Blast Furnace Slag with Different Al2O3/SiO2 Ratio[J]. Ceramics-Silikáty, 2021, 65(2): 187-197

[47]

Liu JL, Wang QK, Zhang Z, et al.. Investigation on Crystallization Behavior, Structure, and Properties of Li2O-Al2O3-SiO2 Glasses and Glass-Ceramics with Co-doping ZrO2/P2O5[J]. Journal of Non-Crystalline Solids, 2022, 576: 121 226-121 235

[48]

Aliyah L H, Izzat B M, Hasmaliza M, et al.. Effect of Mechanical Properties on Sintered Lithium Aluminosilicate Glass Ceramic and Its Thermal Shock Resistance Properties[C]. AIP Conf. Proc., 2020020 0472 267

[49]

Dechandt ICJ, Soares P, Pascual MJ, et al.. Sinterability and Mechanical Properties of Glass-Ceramics in the System SiO2-Al2O3-MgO/ZnO [J]. Journal of the European Ceramic Society, 2020, 40(15): 6 002-6 013

[50]

Chen LN, Sun TF, Hao ZB, et al.. Ultrahigh Hardness Li2O-MgO-Al2O3-SiO2 Glass-Ceramics Containing Multiphase Nanocrystals[J]. Journal of the American Ceramic Society, 2022, 105: 7 614-7 624

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature

PDF

60

Accesses

0

Citation

Detail

Sections
Recommended

/