Phase Evolution and Properties of Transparent TiO2-modified YLAS Glass-ceramics

Dongsheng He , Xianzi Li , Penghui Yang , Yanhang Wang , Bin Han

Journal of Wuhan University of Technology Materials Science Edition ›› 2026, Vol. 41 ›› Issue (1) : 33 -44.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2026, Vol. 41 ›› Issue (1) :33 -44. DOI: 10.1007/s11595-026-3222-0
Advanced Materials
research-article

Phase Evolution and Properties of Transparent TiO2-modified YLAS Glass-ceramics

Author information +
History +
PDF

Abstract

The substitution of TiO2 for SiO2 in Y2O3-Li2O-Al2O3-SiO2 (YLAS) glass-ceramics significantly altered their crystallization behavior and properties. Introducing TiO2 reduced the glass transition temperature while increasing the crystallization peak temperature and lowering activation energy, which facilitated crystallization. The crystal growth shifted from three-dimensional to two-dimensional, and the primary phases transitioned from Al9.83Zr0.17 and Y2Si2O7 to Y4.67(SiO4)3O, though crystal morphology remained unchanged. Grain size increased with higher crystallization temperatures. Mechanically, Vickers hardness slightly decreased (from 796 to 784 Hv), while bending strength improved (from 141 to 146 MPa), suggesting that TiO2 enhanced toughness without compromising structural integrity. The strength of the glass can be further improved through two-step ion exchange, but excessive crystallization can lead to cracks on the glass surface due to excessive surface compressive stress, resulting in a decrease in bending strength. These findings provide critical insights for optimizing YLAS glass-ceramics for advanced applications.

Keywords

Y2O3-Li2O-Al2O3-SiO2 glass-ceramics / microstructure / crystallization / mechanical properties

Cite this article

Download citation ▾
Dongsheng He, Xianzi Li, Penghui Yang, Yanhang Wang, Bin Han. Phase Evolution and Properties of Transparent TiO2-modified YLAS Glass-ceramics. Journal of Wuhan University of Technology Materials Science Edition, 2026, 41(1): 33-44 DOI:10.1007/s11595-026-3222-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lago T G S, Ismail K A R, Lino F A M. Ventilated Double Glass Window with Reflective Film: Modeling and Assessment of Performance [J]. Solar Energy, 2019, 185: 72-88

[2]

Liu H, Chen W, Pan R, et al.. From Molten Calcium Aluminates through Phase Transitions to Cement Phases[J]. Advanced Science, 2020, 7(2): 1 902 209

[3]

Sheikh M Z, Atif M, Raza M A, et al.. Damage Propagation and Dynamic Material Properties of Aluminosilicate Glass[J]. Journal of Non-Crystalline Solids, 2020, 547: 120 313

[4]

Talimian A, Limbach R, Galusek D, et al.. Hardness and Scratch Resistance of Chemically Strengthened Alkali-borosilicate Thin Glass[J]. Journal of the American Ceramic Society, 2024, 107(85 212-5 223

[5]

Yang J, Xing J, Zheng Q, et al.. Transparent Surface Crystallized Aluminosilicate Glasses with an Ultrahigh Crack Resistance[J]. Journal of Non-Crystalline Solids, 2024, 635: 122 996

[6]

Ke X, Shan Z, Li Z, et al.. Toward Hard and Highly Crack Resistant Magnesium Aluminosilicate Glasses and Transparent Glass-ceramics[J]. Journal of the American Ceramic Society, 2020, 103(63 600-3 609

[7]

Huang B, Zheng Q, Cai M, et al.. Impacts of Substituting Magnesium with Zinc on Crystallization Behaviors in an Aluminosilicate Glass[J]. Physical Chemistry Chemical Physics, 2024, 26(1813 987-13 994

[8]

Li X, Wang Y, Yang P, et al.. Effect of Y2O3/La2O3 on Structure and Mechanical Properties of Li2O–Al2O3–SiO2 Glass[J]. Journal of Non-Crystalline Solids, 2022, 596: 121 847

[9]

Venkateswaran C, Sreemoolanadhan H, Pant B, et al.. Processing Li2O-Al2O3-SiO2 (LAS) Glass-ceramic with and without P2O5 through Bulk and Sintering Route[J]. Journal of Non-Crystalline Solids, 2020, 550: 120 289

[10]

Shan Z, Zhao T, Ke X, et al.. Oxygen Tri-clusters Make Glass Highly Crack-resistant[J]. Acta Materialia, 2024, 262: 119 425

[11]

Gao C, Zhao X, Li B. Influence of Y2O3 on Microstructure, Crystallization, and Properties of MgO-Al2O3-SiO2 Glass-ceramics[J]. Journal of Non-Crystalline Solids, 2021, 560: 120 728

[12]

Luo Y, Wang F, Liao Q, et al.. Effect of TiO2 on Crystallization Kinetics, Microstructure and Properties of Building Glass-ceramics Based on Granite Tailings[J]. Journal of Non-Crystalline Solids, 2021, 572: 121 092

[13]

Kleebusch E, Patzig C, Krause M, et al.. The Effect of TiO2 on Nucleation and Crystallization of a Li2O-Al2O3-SiO2 Glass Investigated by XANES and STEM[J]. Scientific Reports, 2018, 8(1): 2 929

[14]

Wu J, Lin C, Liu J, et al.. The Effect of Complex Nucleating Agent on the Crystallization, Phase Formation and Performances in Lithium Aluminum Silicate (LAS) Glasses[J]. Journal of Non-Crystalline Solids, 2019, 521: 119 486

[15]

Liu J, Wang Q, Zhang Z, et al.. Investigation on Crystallization Behavior, Structure, and Properties of Li2O–Al2O3–SiO2 Glasses and Glass-ceramics with Co-doping ZrO2/P2O5[J]. Journal of Non-Crystalline Solids, 2022, 576: 121 226

[16]

Calahoo C M, Zwanziger J W, Butler I S. Mechanical-structural Investigation of Ion-exchanged Lithium Silicate Glass using Micro-Raman Spectroscopy[J]. The Journal of Physical Chemistry C, 2016, 120(137 213-7 232

[17]

Xie H, Chen H, Fu H, et al.. Structural and Performance Variations of Aluminoborosilicate Glass Substrates with Mixed Alkaline Earth Effect for Applications in 3D Integrated Packaging[J]. Ceramics International, 2024, 50(2038 089-38 095 Part A

[18]

Zhu W, Jiang H, Zhang H, et al.. Effect of TiO2 and CaF2 on the Crystallization Behavior of Y2O3-Al2O3-SiO2 Glass Ceramics[J]. Ceramics International, 2018, 44(6): 6 653-6 658

[19]

Lu Z, Lu J, Li X, et al.. Effect of MgO Addition on Sinterability, Crystallization Kinetics, and Flexural Strength of Glass–ceramics from Waste Materials[J]. Ceramics International, 2016, 42(2): 3 452-3 459 Part B

[20]

Bai Z, Qiu G, Yue C, et al.. Crystallization Kinetics of Glass–ceramics Prepared from High-carbon Ferrochromium Slag[J]. Ceramics International, 2016, 42(16): 19 329-19 335

[21]

Kissinger H. Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis[J]. Journal of Research of the National Bureau of Standards, 1956, 57(4): 217-221

[22]

Augis J A, Bennett J E. Calculation of the Avrami Parameters for Heterogeneous Solid State Reactions using a Modification of the Kissinger Method[J]. Journal of Thermal Analysis, 1978, 13(2): 283-292

[23]

Yongsheng D, Jie M, Yu S, et al.. Crystallization Characteristics and Corrosion Properties of Slag Glass-ceramic Prepared from Blast Furnace Slag Containing Rare Earth[J]. Journal of Non-Crystalline Solids, 2020, 532: 119 880

[24]

Goel A, Shaaban E R, Melo F C L, et al.. Non-isothermal Crystallization Kinetic Studies on MgO–Al2O3–SiO2–TiO2 Glass[J]. Journal of Non-Crystalline Solids, 2007, 353(24): 2 383-2 391

[25]

Zheng Q, Deng L, Wang F, et al.. Transparent Glass-ceramics Achieved by Inward Orientational Growth of Single Vrystals[J]. Journal of Non-Crystalline Solids, 2025, 657: 123 505

[26]

Berthier T, Fokin V M, Zanotto E D. New Large Grain, Highly Crystalline, Transparent Glass-ceramics[J]. Journal of Non-Crystalline Solids, 2008, 354(151 721-1 730

[27]

Lei W, Luo Z, He Y, et al.. ZrO2-doped Transparent Glass-ceramics Embedding ZnO Nano-crystalline with Enhanced Defect Emission for Potential Yellow-light Emitter Applications[J]. Ceramics International, 2021, 47(2435 073-35 080

[28]

Edgar A, Williams G V M, Hamelin J. Optical Scattering in Glass Ceramics[J]. Current Applied Physics, 2006, 6(3): 355-358

[29]

Han L, Song J, Zhang Q, et al.. Synthesis, Structure and Properties of MgO-Al2O3-SiO2-B2O3 Transparent Glass-Ceramics[J]. Silicon, 2018, 10(6): 2 685-2 693

[30]

Patterson A L. The Scherrer Formula for X-Ray Particle Size Determination[J]. Physical Review, 1939, 56(10): 978-982

[31]

Mandal I, Chakraborty S, Jayanthi K, et al.. Role of Sodium-Ion Dynamics and Characteristic Length Scales in Ion Conductivity in Aluminophosphate Glasses Containing Na2SO4[J]. The Journal of Physical Chemistry C, 2022, 126(6): 3 276-3 288

[32]

Ke X, Wang X, Wang Y, et al.. Mg and Al Mixed Effects on Thermal Properties in Aluminosilicate Glasses[J]. Journal of the American Ceramic Society, 2023, 106(12): 7 449-7 459

[33]

Zheng T, Li M, Ma Y, et al.. Kinetic Analysis of the Crystallization of Y2O3 and La2O3 Doped Li2O-Al2O3-SiO2 Glass[J]. RSC Advance, 2024, 14(10): 7 052-7 060

[34]

Deng L, Miyatani K, Suehara M, et al.. Ion-exchange Mechanisms and Interfacial Reaction Kinetics during Aqueous Corrosion of Sodium Silicate Glasses[J]. npj Materials Degradation, 2021, 5(1): 15

[35]

Mu Y, Qiu J, Wu L, et al.. Ion-exchange Induced Mechanical Properties Enhancement and Microstructural Modifications of Transparent Lithium Aluminosilicate Glass-ceramics[J]. Ceramics International, 2024, 50(914 878-14 883 Part A

[36]

Alzahrani A S, Pintori G, Sglavo V M. Conventional and Electric Field-assisted Ion Exchange on Glass-ceramics for Dental Applications [J]. Journal of the European Ceramic Society, 2021, 41(10): 5 341-5 348

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature

PDF

54

Accesses

0

Citation

Detail

Sections
Recommended

/