Effect of Al2O3/SiO2 Ratio on the Structure and Tensile Strength of Glass Fiber by Experiment and Molecular Dynamics Simulation

Junfeng Kang , Zhaozhi Xu , Shengyun Yang , Zeyu Kang , Wenkai Gao , Yi Cao , Zhiyao Tang , Yongyan Li , Yunlong Yue

Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (5) : 1251 -1261.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (5) :1251 -1261. DOI: 10.1007/s11595-025-3164-y
Advanced Materials
research-article

Effect of Al2O3/SiO2 Ratio on the Structure and Tensile Strength of Glass Fiber by Experiment and Molecular Dynamics Simulation

Author information +
History +
PDF

Abstract

The effects of different Al2O3/SiO2 (Al/Si) ratios on the structure and tensile strength of Na2O-CaO-MgO-Al2O3-SiO2 glass fiber were investigated by Raman, tensile strength tests and molecular dynamics simulation. The results showed that Al3+ mainly existed in the form of [AlO4] within the glass network. With the increase of Al/Si ratio, the Si-O-Al linkage gradually became the main connection mode of glass network. The increase of bridging oxygen content and variation of Qn indicated that a higher degree of network polymerization was formed. The tensile strength of the glass fibers obtained through experiments increased from 2 653.56 to 2 856.83 MPa, which was confirmed by the corresponding molecular dynamics simulation. During the stretching process, the Si-O bonds in the Si-O-Al linkage tended to break regardless of the compositional changes, and the increase of fractured Si-O-Al and Al-O-Al linkage absorbed more energy to resist the destroy.

Keywords

aluminosilicate glass / short-range structure / molecular dynamics simulations / tensile strength

Cite this article

Download citation ▾
Junfeng Kang, Zhaozhi Xu, Shengyun Yang, Zeyu Kang, Wenkai Gao, Yi Cao, Zhiyao Tang, Yongyan Li, Yunlong Yue. Effect of Al2O3/SiO2 Ratio on the Structure and Tensile Strength of Glass Fiber by Experiment and Molecular Dynamics Simulation. Journal of Wuhan University of Technology Materials Science Edition, 2025, 40(5): 1251-1261 DOI:10.1007/s11595-025-3164-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Singh J, Kumar J, Kumar S, et al.. Properties of Glass-Fiber Hybrid Composites: A Review[J]. Polym-Plast. Technol., 2016, 56(5): 455-469

[2]

Li H, Richards C, Watson J. High. Performance Glass Fiber Development for Composite Applications[J]. Int. J. Appl. Glass. Sci., 2013, 5(1): 65-81

[3]

Demina N M. Current Compositions for Processing High-Strength High-Modulus Continuous Glass Fiber (Review)[J]. Fibre Chem., 2016, 48(2): 118-124

[4]

Li H, Charpentier T, Du J C, et al.. Composite Reinforcement: Recent Development of Continuous Glass Fibers[J]. Int. J. Appl. Glass. Sci., 2017, 8(1): 23-36

[5]

Tian X K, Wu W X, Liu X, et al.. Structure, Thermal Stability and Spinnability of the CaO-MgO-Al2O3-SiO2 Glasses with SiO2 Replaced by Al2O3[J]. J. Non-Cryst. Solids, 2023, 600: 122 041

[6]

Ragoen C, Sen S, Lambricht T, et al.. Effect of Al2O3 Content on the Mechanical and Interdiffusional Properties of Ion-exchanged Na-aluminosilicate Glasses[J]. J. Non-Cryst. Solids, 2017, 458: 129-136

[7]

Deng L, Du J C. Development of Effective Empirical Potentials for Molecular Dynamics Simulations of the Structures and Properties of Boroaluminosilicate Glasses[J]. J. Non-Cryst. Solids, 2016, 453: 177-194

[8]

Sun W, Du J C. Interfacial Structures of Spinel Crystals with Borosilicate Nuclear Waste Glasses from Molecular Dynamics Simulations[J]. J. Am. Ceram. Soc., 2019, 102(8): 4583-4601

[9]

Xiang Y, Du J C, Smedskjaer M M, et al.. Structure and Properties of Sodium Aluminosilicate Glasses from Molecular Dynamics Simulations[J]. J. Chem. Phys., 2013, 139(4): 044 507

[10]

Atila A, Ghardi E M, Hasnaoui A, et al.. Alumina Effect on the Structure and Properties of Calcium Aluminosilicate in the Percalcic Region: A Molecular Dynamics Investigation[J]. J. Non-Cryst. Solids, 2019, 525: 119 470

[11]

Thompson A P, Aktulga H M, Berger R, et al.. LAMMPS-a Flexible Simulation Tool for Particle-based Materials Modeling at the Atomic, Meso, and Continuum Scales[J]. Comput. Phys. Commun., 2022, 271: 108 171

[12]

Ito S, Taniguchi T. Effect of Cooling Rate on Structure and Mechanical Behavior of Glass by MD Simulation[J]. J. Non-Cryst. Solids, 2004, 349: 173-179

[13]

Deng L, Du J C. Development of Boron Oxide Potentials for Computer Simulations of Multicomponent Oxide Glasses[J]. J. Am. Ceram. Soc., 2018, 102(52 482-2 505

[14]

Tuheen M I, Deng L, Du J C. A Comparative Study of the Effectiveness of Empirical Potentials for Molecular Dynamics Simulations of Borosilicate Glasses[J]. J. Non-Cryst. Solids, 2021, 553: 120 413

[15]

Lodesani F, Menziani M C, Hijiya H, et al.. Pedone. Structural Origins of the Mixed Alkali Effect in Alkali Aluminosilicate Glasses: Molecular Dynamics Study and Its Assessment[J]. Sci. Rep., 2020, 10(1): 2 906

[16]

Taron M, Delaye J M, Gin S. A Classical Molecular Dynamics Simulation Method for the Formation of “Dry” Gels from Boro-aluminosilicate Glass Structures[J]. J. Non-Cryst. Solids, 2021, 553: 120 513

[17]

Allu A R, Gaddam A, Ganisetti S, et al.. Structure and Crystallization of Alkaline-Earth Aluminosilicate Glasses: Prevention of the Alumina-Avoidance Principle[J]. J. Phys. Chem. B, 2018, 122(174 737-4 747

[18]

Muniz R F, Baesso M L, Sato F, et al.. High Pressure Effect on the Short- and Intermediate-range Structure of Depolymerized Soda Lime Silicate Glass: Insights from Micro-Raman Spectroscopy[J]. Vib. Spectrosc., 2020, 110: 103 113

[19]

Grammes T, Ligny D D, Scheffler F, et al.. Influence of Phosphate on Network Connectivity and Glass Transition in Highly Polymerized Aluminosilicate Glasses[J]. J. Phys. Chem. B, 2022, 126(479 911-9 926

[20]

Zheng W H, Zhong J B, Cao H, et al.. Raman Spectra and Surface Structure of CaO-Fe2O3-Ai2O3-SiO2 Glass Leached in Potassium Hydroxide Solutions[J]. Glass. Phys. Chem., 2014, 40(6600-610

[21]

Daniel I, McMillan P F, Gillet P, et al.. Raman Spectroscopic Study of Structural Changes in Calcium Aluminate (CaAl2O4) Glass at High Pressure and High Temperature[J]. Chem. Geol., 1996, 128(1–4): 5-15

[22]

Loewenstein W. The Distribution of Aluminum in the Tetrahedra of Silicates and Aluminates[J]. Am. Mineral., 1954, 39(1–2): 92-96

[23]

Zhang Y X, Li H R, Liu S Y, et al.. Raman Spectroscopic Study of Irregular Network in the Process of Glass Conversion to CaO-MgO-Al2O.-SiO2 Glass-ceramics[J]. J. Non-Cryst. Solids, 2021, 563: 120 701

[24]

Petkov V, Billinge S, Shastri S, et al.. Polyhedral Units and Network Connectivity in Calcium Aluminosilicate Glasses from High-energy X-ray Diffraction[J]. Phys. Rev. Lett., 2000, 85(16): 3 436

[25]

Gong K, White C E. Predicting CaO-(MgO)-Al2O3-SiO2 Glass Reactivity in Alkaline Environments from Force Field Molecular Dynamics Simulations[J]. Cement Concrete Res., 2021, 150: 106 588

[26]

Charpentier T, Okhotnikov K, Novikov A N, et al.. Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies[J]. J. Phys. Chem. B, 2018, 122(419 567-9 583

[27]

Charfi B, Zekri M, Herrmann A, et al.. Atomic Scale Network Structure of a Barium Aluminosilicate Glass Doped with Different Concentrations of Rare-earth Ions Explored by Molecular Dynamics Simulations[J]. Comp. Mater. Sci., 2023, 218: 111 965

[28]

Deng B, Tandia A, Shi Y. Impact of Pressure on Structure and Properties of Hot-compressed Na2O-Al2O3-SiO2 Glass by Molecular Dynamics Simulations[J]. J. Am. Ceram. Soc., 2021, 104(62 530-2 538

[29]

Christie J K, Tilocca A. Short-Range Structure of Yttrium Alumino-Silicate Glass for Cancer Radiotherapy: Car-Parrinello Molecular Dynamics Simulations[J]. Adv. Eng. Mater., 2010, 12(7326-330

[30]

Jiang C H, Xiong Z X, Bu Y S, et al.. Study on the Structure and Properties of High-Calcium Coal Ash in the High-Temperature Zone of a Blast Furnace: A Molecular Dynamics Simulation Investigation[J]. JOM, 2020, 72(7): 2 713-2 720

[31]

Cormier L, Neuville D R. Ca and Na Environments in Na2O–CaO–Al2O3-SiO2 Glasses: Influence of Cation Mixing and Cation-network Interactions[J]. Chem. Geol., 2004, 213(1–3): 103-113

[32]

Goj P, Stoch P. Influence of CaO on Structural Features of Polyphosphate P2O5-Fe2O3-FeO Glasses by Molecular Dynamics Simulations[J]. J. Non-Cryst. Solids, 2020, 537: 120 014

[33]

Bechgaard T K, Scannell G, Huang L, et al.. Structure of MgO/CaO Sodium Aluminosilicate Glasses: Raman Spectroscopy Study[J]. J. Non-Cryst. Solids, 2017, 470: 145-151

[34]

Shan Z T, Zhao T Y, Ke X F, et al.. Oxygen Tri-clusters Make Glass Highly Crack-resistant[J]. Acta. Mater., 2024, 262: 119 425

[35]

Gutnikov S I, Manylov M S, Lipatov Y V, et al.. Effect of the Reduction Treatment on the Basalt Continuous Fiber Crystallization Properties[J]. J. Non-Cryst. Solids., 2013, 368: 45-50

[36]

Kuzmin K L, Gutnikov S I, Zhukovskaya E S, et al.. Basaltic Glass Fibers with Advanced Mechanical Properties[J]. J. Non-Cryst. Solids, 2017, 476: 144-150

[37]

Naresh K, Shankar K, Velmurugan R. Reliability Analysis of Tensile Strengths Using Weibull Distribution in Glass/epoxy and Carbon/epoxy Composites[J]. Composites Part B, 2018, 133: 129-144

[38]

Chen X F, Zhang Y S, Huo H B, et al.. Improving the Tensile Strength of Continuous Basalt Fiber by Mixing Basalts[J]. Fiber Polym., 2017, 18(9): 1 796-1 803

[39]

Chowdhury S C, Wise E A, Ganesh R, et al.. Effects of Surface Crack on the Mechanical Properties of Silica: A Molecular Dynamics Simulation Study[J]. Eng. Fract. Mech., 2019, 207: 99-108

[40]

Yuan F L, Huang L P. Molecular Dynamics Simulation of Amorphous Silica Under Uniaxial Tension: From Bulk to Nanowire[J]. J. Non-Cryst. Solids, 2012, 358(24): 3 481-3 487

[41]

Yeon J, Chowdhury S C, Gillespie J W. Mechanical Properties and Damage Analysis of S-glass: A Reactive Molecular Dynamics Study[J]. Composites Part B, 2022, 234: 109 706

[42]

Han Z Y, Cong P L. Mechanisms for Mechanical Responses of Asphalt Under Uniaxial Tension With Computational Simulation[J]. Constr. Build. Mater., 2023, 385: 131 497

[43]

Lee K H, Yang Y, Ding L, et al.. Plasticity of Borosilicate Glasses Under Uniaxial Tension[J]. J. Am. Ceram. Soc., 2020, 103(8): 4 295-4 303

[44]

Chowdhury S C, Haque B Z, Gillespie J W. Molecular Dynamics Simulations of the Structure and Mechanical Properties of Silica Glass Using ReaxFF[J]. J. Mater. Sci., 2016, 51(2210 139-10 159

[45]

Xie Y F, Feng F, Li Y J, et al.. Mechanical and Microstructural Response of Densified Silica Glass Under Uniaxial Compression: Atomistic Simulations[J]. Chinese. Phys. B, 2020, 29(10108 101

[46]

Le V V, Nguyen G T. Molecular Dynamics Study of Mechanical Behavior in Silica Glass Under Uniaxial Deformation[J]. Comp. Mater. Sci., 2019, 159: 385-396

[47]

Rosales-Sosa G A, Masuno A, Higo Y, et al.. Crack-resistant Al2O3-SiO2 Glasses[J]. Sci. Rep., 2016, 6(123 620

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature

PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

/