Tuning the Coefficients of Thermal Expansion of the Crystallized Cordierite Glasses by Thermal Treatment Protocols

Qiang Duan , Xuefei Ke , Ang Qiao , Haizheng Tao

Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (5) : 1239 -1243.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (5) :1239 -1243. DOI: 10.1007/s11595-025-3162-0
Advanced Materials
research-article

Tuning the Coefficients of Thermal Expansion of the Crystallized Cordierite Glasses by Thermal Treatment Protocols

Author information +
History +
PDF

Abstract

Focusing on the ultralow expansion functionality of the crystalized glass containing the cordierite crystal phase with the molar composition 20.7MgO·20.7Al2O3·51.6SiO2·7.0TiO2, we systematically investigated impacts of thermal treatment protocols on T dependence of coefficients of thermal expansion (CTE). Except for the phase compositions, morphology is identified as another important factor to control the T dependence of CTE. By using X-ray diffraction and scanning electron microscope, various modes of T dependence of CTE for crystallized glasses are ascribed to their different phase compositions and microstructure with finely dispersed nanoparticles. These understanding contributes to the further modification of CTE of the crystalized glass by altering their thermal treatment scenarios.

Keywords

coefficients of thermal expansion / crystalized glass / cordierite / thermal treatment protocols

Cite this article

Download citation ▾
Qiang Duan, Xuefei Ke, Ang Qiao, Haizheng Tao. Tuning the Coefficients of Thermal Expansion of the Crystallized Cordierite Glasses by Thermal Treatment Protocols. Journal of Wuhan University of Technology Materials Science Edition, 2025, 40(5): 1239-1243 DOI:10.1007/s11595-025-3162-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kobayashi Y, Sumi K, Kato E. Preparation of Dense Cordierite Ceramics from Magnesium Compounds and Kaolinite without Additives[J]. Ceramics International, 2000, 26(7): 739-743

[2]

Tulyaganov D U, Tukhtaev M E, Escalante J I, et al.. Processing of Cordierite Based Ceramics from Alkaline-earth-aluminosilicate Glass, Kaolin, Alumina and Magnesite[J]. J. Eur. Ceram. Soc., 2002, 22(11): 1 775-1 782

[3]

Nagata S, Himeno H, Ikeda Y, et al. F-molding: A New Production Method for Largely Aspherical Mirrors of Cordierite[J]. Optical Fabrication and Testing, 2021: OTh2B.1

[4]

Knickerbocker S H, Kumar A H, Herron L W. Cordierite Glass-ceramics for Multilayer Ceramic Packaging[J]. Am. Ceram. Soc. Bull., 1993, 72(1): 90-95

[5]

Johnson R, Ganesh I, Saha B P, et al.. Solid State Reactions of Cordierite Precursor Oxides and Effect of CaO Doping on the Thermal Expansion Behaviour of Cordierite Honeycomb Structures[J]. J. Mater. Sci., 2003, 38(13): 2 953-2 961

[6]

Beall G H. Refractory Glass-ceramics Based on Alkaline Earth Aluminosilicates[J]. Journal of the European Ceramic Society, 2009, 29(7): 1 211-1 219

[7]

Zandona A, Rüdinger B, Hochrein O, et al.. Chemical Gradients at the Surface of TiO2-doped Cordierite Glass-ceramics[J]. J. Non-Cryst. Solids, 2020, 547: 120 298

[8]

Sakamoto A, Himei Y, Hashibe Y. β-Spodumene Glass-ceramic with Anomalous Low Thermal Expansion[J]. Advanced Materials Research, 2008, 39: 381-386

[9]

Deceanne A V, Rodrigues L R, Wilkinson C J, et al.. Examining the Role of Nucleating Agents within Glass-ceramic Systems[J]. J. Non-Cryst. Solids, 2022, 591: 121 714

[10]

Guignard M, Cormier L, Montouillout V, et al.. Structural Fluctuations and Role of Ti as Nucleating Agent in an Aluminosilicate Glass[J]. Journal of Non-Crystalline Solids, 2010, 356(25–27): 1 368-1 373

[11]

Cormier L, Dargaud O, Menguy N, et al.. Investigation of the Role of Nucleating Agents in MgO–SiO2–Al2O3–SiO2–TiO2 Glasses and Glass-Ceramics: A XANES Study at the Ti K- and L2,3-Edges[J]. Cryst. Growth Des., 2011, 11(1311-319

[12]

Hutton W, Thorp J S. The Vibrational Spectra of MgO-Al2O3-SiO2 Glasses Containing TiO2[J]. J. Mater. Sci., 1985, 20(2): 542-551

[13]

Cormier L, Dargaud O, Menguy N, et al.. Investigation of the Role of Nucleating Agents in MgO–SiO2–Al2O3–SiO2–TiO2 Glasses and Glass-ceramics: a XANES Study at the Ti K-and L2,3-edges[J]. Crystal Growth & Design, 2011, 11(1): 311-319

[14]

Zdaniewski W. Crystallization and Structure of a MgO-Al2O3-SiO2-TiO2 Glass-ceramic[J]. J. Mater. Sci., 1973, 8(2): 192-202

[15]

Glendenning M D, Lee W E. Microstructural Development on Crystallizing Hot-Pressed Pellets of Cordierite Melt-derived Glass Containing B2O3 and P2O5[J]. J. Am. Ceram. Soc., 1996, 79(3): 705-713

[16]

Karkhanavala M D, Hummel F A. The Polymorphism of Cordierite[J]. J. Am. Ceram. Soc., 1953, 36(12): 389-392

[17]

Ouyang X Q, Xiao Z H, Lu A X. Phase Transformation and Microstructure of MgO-Al2O3-SiO2 System Glass-ceramics under Different Heat Treatment Conditions[J]. Adv. Appl. Ceram., 2009, 108(3): 178-182

[18]

Sauter A, Roosen-Runge F, Zhang F, et al.. On the Question of Two-step Nucleation in Protein Crystallization[J]. Faraday Discuss, 2015, 179: 41-58

[19]

Guo C, Wang J, Li J, et al.. Kinetic Pathways and Mechanisms of Two-Step Nucleation in Crystallization[J]. The Journal of Physical Chemistry Letters, 2016, 7(24): 5 008-5 014

[20]

Mcmillan P W. Glass-ceramics, 1964, New York, Academic[M]

[21]

Ray C S, Day D E. Determining the Nucleation Rate Curve for Lithium Disilicate Glass by Differential Thermal Analysis[J]. J. Am. Ceram. Soc., 1990, 73(2): 439-442

[22]

Lu A X, Ke Z B, Xiao Z H, et al.. Effect of Heat-treatment Condition on Crystallization Behavior and Thermal Expansion Coefficient of Li2O-ZnO-Al2O3-SiO2-P2O5 Glass-ceramics[J]. Journal of Non-Crystalline Solids, 2007, 353(28): 2 692-2 697

[23]

Salman S M, Salama S N. Thermal Expansion Data of Some Alkali Aluminosilicate Glasses and Their Respective Glass-ceramics[J]. Thermochim Acta, 1985, 90: 261-276

[24]

Drmanic S, Janackovic D, Kostic-Gvozdenovic L, et al.. Phase-transformation Kinetics in Triphasic Cordierite Gel[J]. J. Mater. Res., 2001, 16(2): 451-458

[25]

Jose Torres F, Alarcon J. Phase Evolution by Thermal Treatment of Equimolar Cobalt-magnesium Cordierite Glass Powders[J]. Journal of the European Ceramic Society, 2004, 24(4): 681-691

[26]

Chen G-H. Sintering, Crystallization, and Properties of CaO Doped Cordierite-based Glass-ceramics[J]. Journal of Alloys and Compounds, 2008, 455(1–2): 298-302

[27]

Maeda K, Sera Y, Yasumori A. Effect of Molybdenum and Titanium Oxides on Mechanical and Thermal Properties of Cordierite-enstatite Glass-ceramics[J]. J. Non-Cryst. Solids, 2016, 434: 13-22

[28]

Shigapov A N, Graham G W, Mccabe R W, et al.. The Preparation of High-surface-area Cordierite Monolith by Acid Treatment[J]. Appl. Catal. A: General, 1999, 182(1): 137-146

[29]

Kang J, Wang J, Zhou X, et al.. Effects of Alkali Metal Oxides on Crystallization Behavior and Acid Corrosion Resistance of Cordierite-based Glass-ceramics[J]. J. Non-Cryst. Solids, 2018, 481: 184-190

[30]

Kumar S, Singh K, Ramachandrarao P. Synthesis of Cordierite from Fly Ash and Its Refractory Properties[J]. J. Mater. Sci. Lett., 2000, 19: 1 263-1 265

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature

PDF

41

Accesses

0

Citation

Detail

Sections
Recommended

/