Research Progress in the Properties of Magnesium Phosphate Cement and Its Application in Resisting Salt Corrosion
Chenghui Sheng , Jinmei Dong , Longlong Yang , Jing Wen , Weixin Zheng , Chenggong Chang , Hongxia Qiao , Yuxin Zhao , Lijun Cui , Shengxia An
Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (3) : 821 -835.
Research Progress in the Properties of Magnesium Phosphate Cement and Its Application in Resisting Salt Corrosion
In this essay, by summarizing the research progress and achievements of various scholars at home and abroad in recent years on the material properties and corrosion resistance of magnesium phosphate cement (MPC), we review the factors influencing on the properties of MPC, and analyze the effects of raw materials, retarders, and admixtures on the properties of MPC. Two different hydration mechanisms of MPC are discussed, and finally the research progress of MPC in the field of anti-corrosion coatings for steel and ordinary concrete (OPC) is highlighted, and suggestions and prospects are given.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Sun G, Zhu Y, Ye M, et al. Regional Soil Salinity Spatiotemporal Dynamics and Improved Temporal Stability Analysis in Arid Agricultural Areas[J]. Journal of Soils and Sediments, 2022: 1–21 |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
Zhang D Y, Ning Z J, Zhen X M, et al. Research Progress on Life Prediction of Reinforced Concrete Structures in Complex Environments[J]. Concrete, 2023(08): 8–13, 22 |
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
Yu Z, Guo Z, Wang L, et al. An Eco-Friendly Approach to Purify Natural Magnesite and to Densify Sintered Magnesia[J]. Open Ceramics, 2024: 100 549 |
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
Wagh A S, Singh D. Method for Stabilizing Low-level Mixed Wastes at Room Temperature[P]. U.S. Patent 5 645 518, 1997-7-8 |
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature
/
| 〈 |
|
〉 |