Effects of CaO/MgO Molar Ratio on Microstructure and Mechanical Properties of Silicate Glass-ceramics

Zhiqian Yu , Anjian Li , Xiaokun Tian , Jianlei Wu , Yunlong Yue , Wenkai Gao , Junfeng Kang

Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (3) : 714 -720.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (3) : 714 -720. DOI: 10.1007/s11595-025-3107-7
Advanced Materials

Effects of CaO/MgO Molar Ratio on Microstructure and Mechanical Properties of Silicate Glass-ceramics

Author information +
History +
PDF

Abstract

Silicate glass-ceramics were prepared by adding 40 wt% granite wastes. The effects of CaO/MgO (C/M) molar ratio on microstructure and mechanical properties of glass-ceramics were investigated. With C/M ratio increasing, the crystallization behavior changed from bulk crystallization to surface crystallization with heat treatment at 800 °C. However, bulk crystallization occurred in all samples when crystallized at both 850 and 900 °C. The content of forsterite and tainiolite initially increased and then decreased, while diopside and kalsilite increased when heated at 850 °C. For 900 °C, the increase of C/M ratio promoted the precipitation of diopside rather than forsterite and tainiolite, and interlocked plate crystals abundantly appeared with C/M ratio ≥ 0.14. The values of Vickers hardness for samples crystallized at 850 and 900 °C increased initially followed by a decrease, while the values of fracture toughness showed the opposite trend. The glass-ceramic with C/M ratio 0.065 heated at 900 °C showed relatively high Vickers hardness ((5.7 ± 0.14) GPa) and excellent fracture toughness ((3.55 ± 0.14) MPa·m1/2).

Cite this article

Download citation ▾
Zhiqian Yu, Anjian Li, Xiaokun Tian, Jianlei Wu, Yunlong Yue, Wenkai Gao, Junfeng Kang. Effects of CaO/MgO Molar Ratio on Microstructure and Mechanical Properties of Silicate Glass-ceramics. Journal of Wuhan University of Technology Materials Science Edition, 2025, 40(3): 714-720 DOI:10.1007/s11595-025-3107-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HolandW, BeallG HGlass-Ceramic Technology, 2019, Canada, John Wiley & Sons M]

[2]

StrnadZGlass-ceramic Materials: Liquid Phase Separation, Nucleation and Crystallization in Glasses, 1986, Amsterdam-Oxford-New York-Tokyo, Elsevier[M]

[3]

FayadA M, FathiA M, El-BeihA A, et al.. Correlation between Antimicrobial Activity and Bioactivity of Na-Mica and Na-Mica/Fluorapatite Glass and Glass-Ceramics and Their Corrosion Protection of Titanium in Simulated Body Fluid[J]. J. of Materi Eng and Perform, 2019, 28: 5661-5673

[4]

HenryJ, HillR G. The Influence of Lithia Content on the Properties of Fluorphlogopite Glass-Ceramics. II. Microstructure Hardness and Machinability[J]. J Non-Cryst Solids, 2003, 319: 13-30

[5]

SaraswatiV. Additive Induced Crystallization of Mica Phase in K2O SiO2 MgO F Glass Ceramic[J]. J. Non-Cryst. Solids, 1990, 124: 254-257

[6]

G H Beall. Mica Glass-ceramics[P]. US3689293A, 1972-9-5

[7]

K Kitajima, N Daimon. Synthesis and Swelling Characteristics of Li-taeniolite[J]. Nippon Kagaku Kaishi, 1975: 1 168–1 174

[8]

UnoT, KasugaT, NakayamaS, et al.. Microstructure of Mica-Based Nanocomposite Glass-Ceramics[J]. J. Am. Ceram. Soc., 1993, 76: 539-541

[9]

BaikD S, NoK S, ChunJ S, et al.. Mechanical Properties of Mica Glass-Ceramics. J. Am. Ceram. Soc., 1995, 78: 1217-1222

[10]

C Ck. Microstructures & Mechanical Properties of Mica Glass-ceramics[J]. Electron Microscopy and Structure of Materials, 1972: 1 167–1 194

[11]

NiaA F. Thermal Properties and Crystallization of Lithium-mica Glass and Glass-ceramics[J]. Thermochim. Acta, 2013, 564: 1-6

[12]

FangP A, WuZ P. Effect of Microstructural Evolution on the Mechanical Properties of Lepidolite Based Glass-ceramics[J]. J. Eur. Ceram. Soc., 2002, 22: 1381-1385

[13]

DenryI L, HollowayJ A. Effect of Additives on the Microstructure and Thermal Properties of a Mica-based Glass-ceramic[J]. J. Biomed. Mater. Res., 2002, 63(2): 146-151

[14]

GaraiM, SinghC K, RoutS K. Crystallization and Microstructure in K2O Substituted SiO2-MgO-Al2O3-Li2O-AlPO4 Glass-ceramics[J]. Solid State Commun., 2022, 350: 114 758

[15]

LokeshwariM, JagadishK S. Eco-friendly Use of Granite Fines Waste in Building Blocks[J]. Procedia Environ. Sci., 2016, 35: 618-623

[16]

LimaR C O, LiraH L, NevesG A, et al.. Study of the Influence of Granite Residue in Different Compositions to Prepare Ceramic Membranes[J]. Mater. Sci. Forum., 2014, 798–799: 542-547

[17]

BehrazniaT, AlzahraniA S, RashwanM, et al.. Machinability of Fluormica Glass-ceramics of High Mica Volume Fraction[J]. J. Eur. Ceram. Soc., 2020, 40: 887-892

[18]

HabelitzS, CarlG, RüsselC, et al.. Mechanical Properties of Oriented Mica Glass Ceramic[J]. J. Non-Cryst. Solids, 1997, 220: 291-298

[19]

LiW, MitchellB S. Nucleation and Crystallization in Calcium Aluminate Glasses[J]. J. Non-Cryst. Solids, 1999, 255: 199-207

[20]

ChenG H. Effect of Replacement of MgO by CaO on Sintering, Crystallization and Properties of MgO-Al2O3-SiO2 System Glass-ceramics[J]. J. Mater. Sci., 2007, 42: 7239-7244

[21]

SalmanS M, SalamaS N, Abo-MosallamH A. Contributions of CaO and SrO in Crystallization and Properties of Some Glasses Based on Stoichiometric Tetra-silicic Fluoromica[J]. Ceram. Int., 2017, 43: 9424-9430

[22]

HuY, TsaiH T. The Effect of BaO on The Crystallization Behaviour of a Cordierite-type Glass[J]. Mater. Chem. Phys., 1998, 52: 184-188

[23]

ReynosoV C S, YukimituK, NagamiT, et al.. Crystallization Kinetics in Phosphate Sodium-based Glass Studied by DSC Technique[J]. J. Phys. Chem. Solids, 2003, 64: 27-30

[24]

NiS, ChouL, ChangJ. Preparation and Characterization of Forsterite (Mg2SiO4) Bioceramics[J]. Ceram. Int., 2007, 33: 83-88

[25]

LiuX, XiaoQ. Research on the Mechanical Strength of Nepheline Glass-ceramics of Na2O-Al2O3-SiO2 System[J]. Mater. Sci. Technol., 1996, 4: 65-69

[26]

TaylorE W. Correlation of the Mohs’s Scale of Hardness with the Vickers’s Hardness Numbers[J]. Mineral. Mag., 1949, 28: 718-721

[27]

KaramanovA, PelinoM. Induced Crystallization Porosity and Properties of Sintereds Diopside and Wollastonite Glass-ceramics[J]. J. Eur. Ceram. Soc., 2008, 28: 555-562

[28]

MallikA, MaitiP K, KunduP, et al.. Influence of B2O3 on Crystallization Behavior and Microstructure of Mica Glass-Ceramics in the System BaO·4MgO·Al2O3·6 SiO2·2MgF2[J]. J. Am. Ceram. Soc., 2012, 95: 3505-3508

[29]

GaraiM, MurthyT S R C, KarmakarB. Microstructural Characterization and Wear Properties of Silver and Gold Nanoparticle Doped K-Mg-Al-Si-O-F Glass-ceramics[J]. Ceram. Int., 2018, 44: 22308-22317

[30]

CasasolaR, PérezJ M, RomeroM. Crystal Growth of F-Phlogopite from Glasses of the SiO2-Al2O3-MgO-K2O-F System[J]. J. Am. Ceram. Soc., 2016, 99: 484-491

[31]

GaraiM, MauryaA K, RoyS. Zn2+-Controlled Crystallization and Microstructure in K-Li-Mg-B-Si-Al-F Glass[J]. MRS Adv., 2018, 3: 3525-3533

[32]

YuL, XiaoH, ChengY. Influence of Magnesia on the Structure and Properties of MgO-Al2O3-SiO2-F Glass-ceramics[J]. Ceram. Int., 2008, 34: 63-68

[33]

MollaA R, BasuB. Microstructure, Mechanical, and in Vitro Properties of Mica Glass-ceramics With Varying Fluorine Content[J]. J. Mater. Sci. Mater. Med., 2009, 20: 869-882

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/