A Novel Glass Ceramic Back Plate Embedded with Needle-like Tetragonal TiO2

Youfeng Zhong , Mingzhong Wang , Yu Rao , Yinsheng Xu , Xianghua Zhang , Dong Wu , Shisheng Lin , Ping Lu

Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (3) : 660 -667.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (3) : 660 -667. DOI: 10.1007/s11595-025-3101-0
Advanced Materials

A Novel Glass Ceramic Back Plate Embedded with Needle-like Tetragonal TiO2

Author information +
History +
PDF

Abstract

In this smart era, more severe challenges have been brought to the mechanical performance of glass ceramic (GC)-based back plate. Herein, a new kind of GCs, the GCs embedded with high-aspect-ratio needle-like tetragonal TiO2, is developed. A comprehensive study was conducted to unearth the microstructure, glassy structure, crystallisation properties, and mechanical performance. Remarkably, in comparison with the precursor glass, the optimized GCs exhibits much stronger mechanical performance with Vickers hardness of 6.83 GPa, elastic modulus of 80.64 GPa, and fracture toughness of 2.63 MPa·m1/2, because of the constructured net-shaped microstructure via needle-like morphologied crystals with high aspect ratio among glass matrix.

Cite this article

Download citation ▾
Youfeng Zhong, Mingzhong Wang, Yu Rao, Yinsheng Xu, Xianghua Zhang, Dong Wu, Shisheng Lin, Ping Lu. A Novel Glass Ceramic Back Plate Embedded with Needle-like Tetragonal TiO2. Journal of Wuhan University of Technology Materials Science Edition, 2025, 40(3): 660-667 DOI:10.1007/s11595-025-3101-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DeubenerJ, AllixM, DavisM J, et al.. Updated Definition of Glass-ceramics[J]. Journal of Non-Crystalline Solids, 2018, 501: 3-10

[2]

HanL, SongJ, LinC, et al.. Crystallization, Structure and Properties of MgO-Al2O3-SiO2 Highly Crystalline Transparent Glass-ceramics Nucleated by Multiple Nucleating Agents[J]. Journal of the European Ceramic Society, 2018, 38: 4533-4542

[3]

Sant’Ana GalloL, CélariéF, BettiniJ, et al.. Fracture Toughness and Hardness of Transparent MgO-Al2O3-SiO2 Glass-ceramics[J]. Ceramics International, 2022, 48: 9906-9917

[4]

QuJ, LiuF, YuanC, et al.. Effects of Two-step Heat Treatment on Crystallization Behavior, Densification and Microwave Dielectric Properties of MgO-Al2O3-SiO2-TiO2-Sb2O3 Glass-ceramics[J]. Journal of Non-Crystalline Solids, 2017, 471: 400-405

[5]

GalloL S A, CélariéF, BettiniJ, et al.. Fracture Toughness and Hardness of Transparent MgO-Al2O3-SiO2 Glass-ceramics[J]. Ceramics International, 2022, 48: 9906-9917

[6]

YuX, WangM, RaoY, et al.. Unveiling the Evolution of Early Phase Separation Induced by P2O5 for Controlling Crystallization in Lithium Disilicate Glass System[J]. Journal of the European Ceramic Society, 2023, 43: 5381-5389

[7]

HuangX, YuanC, LiuX, et al.. Effects of P2O5 on Crystallization, Sinterability and Microwave Dielectric Properties of MgO-Al2O3-SiO2-TiO2 Glass-ceramics[J]. Journal of Non-Crystalline Solids, 2017, 459: 123-129

[8]

LiuT, HuangQ, LiangH, et al.. Effect of Fe2O3 Doping on Structure, Physical-mechanical Properties and Luminescence Performance of Magnesium-aluminum-silicon Based Glass-ceramics[J]. Ceramics International, 2020, 46: 28851-28859

[9]

SerbenaF C, MathiasI, FoersterC E, et al.. Crystallization Toughening of A Model Glass-ceramic[J]. Acta Materialia, 2015, 86: 216-228

[10]

YanJ, LiuX, WuX, et al.. Microstructure and Mechanical Properties of Li2Si2O5 Whisker-reinforced Glass-ceramics[J]. Frontiers in Materials, 2022, 9: 849 601

[11]

LuoZ, LiangH, QinC, et al.. Crystallization Kinetics and Phase Formation of Li2O-SiO2-Si3N4 Glass-ceramics with P2O5 Nucleating Agent[J]. Journal of Alloys and Compounds, 2019, 786: 688-697

[12]

LiS, XuY, ZhangX, et al.. Formation and Crystal Growth of Needle-like Rutile in Glass-ceramics[J]. Journal of the European Ceramic Society, 2022, 42: 3313-3320

[13]

HeW, YaoC, ZhaoZ, et al.. Optimization of Heat Treatment Program and Effect of Heat Treatment on Microstructure and Flexural Strength of Micro-nano-Li2Si2O5 Whisker-reinforced Glass-ceramics[J]. Frontiers in Materials, 2023, 9: 1 096 267

[14]

HuangX, ZhaoD, MaL, et al.. Effect of La2O3 on Crystallization of Glass-ceramics[J]. Journal of Non-Crystalline Solids, 2020, 536: 120 007

[15]

WangF, GaoJ, WangH, et al.. Flexural Strength and Translucent Characteristics of Lithium Disilicate Glass-ceramics with Different P2O5 Content[J]. Materials & Design, 2010, 31: 3270-3274

[16]

LiuY, XiangQ, TanY, et al.. Nucleation and Growth of Needle-like Fluorapatite Crystals in Bioactive Glass-ceramics[J]. Journal of Non-Crystalline Solids, 2008, 354: 938-944

[17]

CornilsenB C, CondrateR A. The Vibrational Spectra of α-Alkaline Earth Pyrophosphates[J]. Journal of Solid State Chemistry, 1978, 23: 375-382

[18]

BukinaV, DymshitsO, AlekseevaI, et al.. Optical Glass-ceramics Based on Nanosized Crystals of Magnesium Aluminate Spinel Doped with Iron Ions[J]. Journal of Physics: Conference Series, 2020, 1(697): 012156

[19]

KarakassidesM A, SarantiA, KoutselasI. Preparation and Structural Study of Binary Phosphate Glasses with High Calcium and/or Magnesium Content[J]. Journal of Non-Crystalline Solids, 2004, 347: 69-79

[20]

TulyaganovD U, AgathopoulosS, VenturaJ M, et al.. Synthesis of Glass-ceramics in the CaO-MgO-SiO2 System with B2O3, P2O5, Na2O and CaF2 Additives[J]. Journal of the European Ceramic Society, 2006, 26: 1463-1471

[21]

KaouaS, KrimiS, JazouliA E, et al.. Preparation and Characterization of Phosphate Glasses Containing Titanium and Vanadium[J]. Journal of Alloys and Compounds, 2007, 429: 276-279

[22]

WangZ, XuR. Effects of TiO2 on the Structural Characteristics of CaO-SiO2-Al2O3-TiO2 Glass in the Same Superheat State Studied by Raman Spectra[J]. Ceramics International, 2023, 49: 26494-26504

[23]

KasugaT, AbeY. Calcium Phosphate Invert Glasses with Soda and Titania[J]. Journal of Non-Crystalline Solids, 1999, 243: 70-74

[24]

ChuvaevaT I, DymshitsO S, PetrovV I, et al.. Low-frequency Raman Scattering of Magnesium Aluminosilicate Glasses and Glass-ceramics[J]. Journal of Non-Crystalline Solids, 2001, 282: 306-316

[25]

LvJ, ZhengY, ChenK, et al.. Effects of Li+ Enrichment on the Structure and Microwave Dielectric Properties of LiMgPO4 Ceramics[J]. Ceramics International, 2023, 49: 37245-37252

[26]

PhilipD, GeorgeB L, AruldhasG. IR and Polarized Raman Spectra of Na4P2O7·10H2O[J]. Journal of Raman Spectroscopy, 2005, 21: 523-524

[27]

IbtissamE A, SaidaK, HassaneO. The Effects of Silicon Oxide on the Structure, Physical Chemistry Properties, and Bioactivity of Phosphate Glasses Containing Sodium, Strontium, and Titanium Oxides[J]. Physical Chemistry Research, 2022, 10: 1-12

[28]

StebbinsJ F, KroekerS, LeeS K, et al.. Quantification of Five- and Six-coordinated Aluminum Ions in Aluminosilicate and Fluoride-containing Glasses by High-field, High-resolution Al NMR[J]. Journal of Non-Crystalline Solids, 2000, 275: 1-6

[29]

LeeS, UedaK, NarushimaT, et al.. Preparation of Orthophosphate Glasses in the MgO-CaO-SiO2-Nb2O5-P2O5 System[J]. Biomed Mater Eng, 2017, 28: 23-30

[30]

MercierC, Follet-HouttemaneC, PardiniA, et al.. Influence of P2O5 Content on the Structure of SiO2-Na2O-CaO-P2O5 Bioglasses by 29Si and 31P MAS-NMR[J]. Journal of Non-Crystalline Solids, 2011, 357: 3901-3909

[31]

GrussauteH, MontagneL, PalavitG, et al.. Phosphate Speciation in Na2O-CaO-P2O5-SiO2 and Na2O-TiO2-P2O5-SiO2 Glasses[J]. Journal of Non-Crystalline Solids, 2000, 264: 312-317

[32]

GongC, DuJ, LiX, et al.. One-Step Acidic Hydrothermal Preparation of Dendritic Rutile TiO2 Nanorods for Photocatalytic Performance[J]. Nanomaterials (Basel), 2018, 8: 683

[33]

SreenivasanH, KinnunenP, AdesanyaE, et al.. Field Strength of Network-modifying Cation Dictates the Structure of (Na-Mg) Aluminosilicate Glasses[J]. Frontiers in Materials, 2020, 7: 267

[34]

LiaoS, JinS, PangT, et al.. Novel Color Converters for High Brightness Laser-driven Projection Display: Transparent Ceramics-glass Ceramics Film Composite[J]. Advanced Functional Materials, 2023, 34: 2 307 761

[35]

LinS, LinH, ChenG, et al.. Stable CsPbBr3-glass Nanocomposite for Low-etendue Wide-color-gamut Laser-driven Projection Display[J]. Laser & Photonics Reviews, 2021, 15: 2 100 044

[36]

LinS, LinH, MaC, et al.. High-security-level Multi-dimensional Optical Storage Medium: Nanostructured Glass Embedded with LiGa5O8: Mn2+ with Photostimulated Luminescence[J]. Light: Science & Applications, 2020, 9: 22

[37]

WangH Y, LiY, JiaoS Q, et al.. Effects of Na2O and CaCl2 on the Crystallization and Mechanical Properties of CaO-MgO-Al2O3-SiO2 Glass-ceramics[J]. Journal of Sustainable Metallurgy, 2024, 10: 1-12

[38]

ZhangH, SunB, ChenW. Tailoring Li2Si2O5 Rod-like Particles and Their Simultaneously Strengthening and Toughening Effects on Lithium Disilicate Glass-ceramics[J]. Journal of Non-Crystalline Solids, 2022, 594: 121 794

[39]

ZhangX, ZengH, WangX, et al.. Effect of TiO2 on Crystallization and Mechanical Properties of MgO-Al2O3-SiO2 Glasses Containing P2O5[J]. Ceramics International, 2023, 49: 12499-12507

[40]

ZhangX, WangJ, HanJ. Crystallization Kinetics, Structural and Mechanical Properties of Transparent Lithium Aluminosilicate Glass-ceramics[J]. Journal of Non-Crystalline Solids, 2023, 603: 122 113

[41]

ShibataK, SuzawaT, SogaS, et al.. Improvement of Biological Activity and Proteolytic Stability of Peptides by Coupling with a Cyclic Peptide[J]. Bioorg. Med. Chem. Lett., 2003, 13: 2583-2586

[42]

SantosG G, SerbenaF C, FokinV M, et al.. Microstructure and Mechanical Properties of Nucleant-free Li2O-CaO-SiO2 Glass-ceramics[J]. Acta Materialia, 2017, 130: 347-360

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/