Effect of Ti Additions on Mechanical and Thermodynamic Properties of W-Ti Alloys: A First-principles Study

Jian Zhang , Wei Nie , Jin Huang , Ke Zhu , Ruxia Liu , Ruizhi Zhang , Guoqiang Luo , Qiang Shen

Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (1) : 246 -257.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (1) : 246 -257. DOI: 10.1007/s11595-025-3059-y
Metallic Materials

Effect of Ti Additions on Mechanical and Thermodynamic Properties of W-Ti Alloys: A First-principles Study

Author information +
History +
PDF

Abstract

The mechanical and thermodynamic properties of W-Ti alloys ( including W15Ti1, W14Ti2, W12Ti4 and W8Ti8 alloys) were investigated by the first-principles approach based on density functional theory. The results indicate that W-Ti alloys except W8Ti8 are thermodynamically stable. The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration. However, their B/G ratios and Poisson’s ratios exceed those of pure tungsten, suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys. The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten, indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys. Nevertheless, elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys. This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys.

Cite this article

Download citation ▾
Jian Zhang, Wei Nie, Jin Huang, Ke Zhu, Ruxia Liu, Ruizhi Zhang, Guoqiang Luo, Qiang Shen. Effect of Ti Additions on Mechanical and Thermodynamic Properties of W-Ti Alloys: A First-principles Study. Journal of Wuhan University of Technology Materials Science Edition, 2025, 40(1): 246-257 DOI:10.1007/s11595-025-3059-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schmid K, Rieger V, Manhard A. Comparison of Hydrogen Retention in W and W/Ta Alloys[J]. Journal of Nuclear Materials, 2012, 426: 247-253

[2]

Bolt H, Barabash V, Krauss W, et al.. Materials for the Plasma-facing Components of Fusion Reactors[J]. Journal of Nuclear Materials, 2004, 329–333: 66-73

[3]

Blagoeva D T, Opschoor J, van der Laan J G, et al.. Development of Tungsten and Tungsten Alloys for DEMO Divertor Applications via MIM Technology[J]. Journal of Nuclear Materials, 2013, 442: S198-S203

[4]

Reiser J, Rieth M, Dafferner B, et al.. Tungsten Foil Laminate for Structural Divertor Applications - Basics and Outlook[J]. Journal of Nuclear Materials, 2012, 423: 1-8

[5]

Lv Y, Han Y, Zhao S, et al.. Nano-in-situ-composite Ultrafine-grained W-Y2O3 Materials: Microstructure, Mechanical Properties and High Heat Load Performances[J]. Journal of Alloys and Compounds, 2021, 855: 157 366

[6]

Jiang D, Xiao W, Liu D, et al.. Structural Stability, Electronic Structures, Mechanical Properties and Debye Temperature of W-Re Alloys: A First-principles Study[J]. Fusion Engineering and Design, 2021, 162: 112 081

[7]

Zhou X, Li G, Guo F, et al.. First Principles Investigation of the Structural, Mechanical, Electronic Properties and Debye Temperature of W-Co Alloys[J]. Fusion Engineering and Design, 2021, 170: 112 715

[8]

Xue L, Wang X, Xue F, et al.. Structural, Mechanical, Electronic Properties and Debye Temperature of Tungsten-technetium Alloy: A First-principles Study[J]. Fusion Engineering and Design, 2021, 168: 112 433

[9]

Setyawan W, Kurtz R J. Effects of Transition Metals on the Grain Boundary Cohesion in Tungsten[J]. Scripta Materialia, 2012, 66: 558561

[10]

Jiang D, Li S, He K, et al.. Excellent High Temperature Elasticity and Thermodynamic Properties of W-Cr Alloys: A First-principles Study[J]. Nuclear Materials and Energy, 2023, 34: 101367

[11]

Chookajorn T, Murdoch H A, Schuh C A. Design of Stable Nanocrys-talline Alloys[J]. Science, 2012, 337(6097): 951-954

[12]

Buzi L, Yeh M, Yeh Y W, et al.. Deuterium and Helium Ion Irradiation of Nanograined Tungsten and Tungsten-titanium Alloys[J]. Nuclear Materials and Energy, 2019, 21: 100 713

[13]

Cao Z, Pan M, Hu K, et al.. Effect of Titanium on the Precipitation Behaviors of Transmutation Elements in Tungsten-titanium Alloys from First-principles Calculations[J]. Fusion Engineering and Design, 2020, 158: 111 673-111 673

[14]

Cao Z, Li R, Pan M, et al.. Influence of Titanium on the Clustering of Vacancy, Rhenium and Osmium in Tungsten-titanium Alloys: First-principles Study[J]. Fusion Engineering and Design, 2022, 178: 113 098

[15]

Dy J, Cy O, Sq L. Mechanical Properties of W-Ti Alloys from First-principles Calculations[J]. Fusion Engineering and Design, 2016, 106: 34-39

[16]

Chookajorn T, Schuh C A. Nanoscale Segregation Behavior and High-temperature Stability of Nanocrystalline W-20at% Ti[J]. Acta Materialia, 2014, 73: 128-138

[17]

Blöchl P E. Projector Augmented-wave Method[J]. Physical Review B, 1994, 50(24): 17 953-17 979

[18]

Kresse G. From Ultrasoft Pseudopotentials to the Projector Augment-ed-wave Method[J]. Physical Review B, 1999, 59: 1 758-1 775

[19]

Perdew J P, Chevary J A, Vosko S H, et al.. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation[J]. Physical Review B, 1992, 46(11): 6 671-6 687

[20]

Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77: 3 865-3 868

[21]

Monkhorst H J, Pack J D. Special Points for Brillouin-zone Integrations[J]. Physical Review B, 1976, 13: 5 188-5 192

[22]

Togo A. First-principles Phonon Calculations with Phonopy and Phono3py[J]. Journal of the Physical Society of Japan, 2023, 92: 012 001

[23]

Parlinski K, Li Z Q, Kawazoe Y. First-Principles Determination of the Soft Mode in Cubic ZrO2[J]. Physical Review Letters, 1997, 78: 4 0634 066

[24]

Zhao J, Winey J M, Gupta Y M. First-principles Calculations of Second- and Third-order Elastic Constants for Single Crystals of Arbitrary Symmetry[J]. Physical Review B, 2007, 75: 094 105

[25]

Wang H, Gan Y C, Geng H Y, et al.. MyElas: An Automatized Tool-kit for High-throughput Calculation, Post-processing and Visualization of Elasticity and Related Properties of Solids[J]. Computer Physics Communications, 2022, 281: 108 495

[26]

Voigt W. Ueber die Beziehung Zwischen Den Beiden Elasticitätscon-stanten Isotroper Körper[J]. Annalen der physik, 1889, 274(12): 573587

[27]

Reuß A. Berechnung Der Fließgrenze Von Mischkristallen Auf Grund Der Plastizitätsbedingung Für Einkristalle[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1929, 9(1): 49-58

[28]

Hill R. A General Method of Analysis for Metal-working Processes[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(5): 305-326

[29]

Wang Y, Saal J E, Wu P, et al.. First-principles Lattice Dynamics and Heat Capacity of BiFeO3[J]. Acta Materialia, 2011, 59: 4 229-4 234

[30]

Chong X, Palma J P S, Wang Y, et al.. Thermodynamic Properties of the Yb-Sb System Predicted From First-principles Calculations[J]. Acta Materialia, 2021, 217: 117 169

[31]

Turchi P E A, Drchal V, Kudrnovský J, et al.. Application Ofab Initio-and CALPHAD Thermodynamics to Mo-Ta-W Alloys[J]. Physical Review B, 2005, 71: 094 206

[32]

Cui H, Liu N, Zhou R, et al.. First-principles Study on the Structures and Elastic Properties of W-Ta-V Ternary Alloys[J]. Computational Materials Science, 2022, 202: 110 940

[33]

Soderlind P, Eriksson O, Wills J M, et al.. Theory of Elastic Constants of Cubic Transition Metals and Alloys[J]. Physical Review B, 1993, 48(9): 5 844-5 851

[34]

Tian Y, Xu B, Zhao Z. Microscopic Theory of Hardness and Design of Novel Superhard Crystals[J]. International Journal of Refractory Metals and Hard Materials, 2012, 33: 93-106

[35]

Kaneko T, Yoshimi K. Variations in the Elastic Properties and Lattice Parameters of Mo-Ti and Mo-Cr BCC Solid Solutions, as Estimated by DFT Calculations[J]. Computational Materials Science, 2023, 220: 112 026

[36]

Anderson O L. A Simplified Method for Calculation the Debye Temperature from Elastic Constants[J]. J. Phys. Chem. Solids, 1963, 24: 909-917

[37]

Qi X, Cai N, Chen T, et al.. Experimental and Theoretical Studies on the Elasticity of Tungsten to 13 GPa[J]. Journal of Applied Physics, 2018, 124: 075 902

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

362

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/