Amperometric Glucose Sensor Based on Batch CuO-Modified Screen-Printed Silver-Carbon Electrodes

Haiyan Xia , Yin Huang , Hua Yang , Xintian Wang , Jianping Shi , Lixia Liu , Yacheng Fu , Changyun Quan , Suyuan Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (1) : 35 -41.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2025, Vol. 40 ›› Issue (1) : 35 -41. DOI: 10.1007/s11595-025-3038-3
Advanced Materials

Amperometric Glucose Sensor Based on Batch CuO-Modified Screen-Printed Silver-Carbon Electrodes

Author information +
History +
PDF

Abstract

CuO nanoparticles were successfully synthesized via a two-jet electrospun method, and then screen-printed on silver-carbon electrodes, forming CuO-modified Ag-C (CuO/Ag-C) disposable strip electrodes. In natural environment condition for glucose detection, the obtained CuO/Ag-C electrodes show a high sensitivity of 540 nA·mM−1·cm−2, and a low limit of detection (0.68 mM) in a wide linear response range of 0.68 mM and 3 mM (signal/noise = 3), respectively. In addition, the CuO/Ag-C electrodes also exhibit excellent anti-interference, air stability and repeatability. As a result, the fabrication of CuO nanoparticles via an electrospun process and the technique of screen-printed electrodes are of great significance for glucose detection.

Cite this article

Download citation ▾
Haiyan Xia, Yin Huang, Hua Yang, Xintian Wang, Jianping Shi, Lixia Liu, Yacheng Fu, Changyun Quan, Suyuan Li. Amperometric Glucose Sensor Based on Batch CuO-Modified Screen-Printed Silver-Carbon Electrodes. Journal of Wuhan University of Technology Materials Science Edition, 2025, 40(1): 35-41 DOI:10.1007/s11595-025-3038-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Osuna V, Vega R A, Zaragoza E A, et al.. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection[J]. Biosensors, 2022, 12(3): 137

[2]

Dong Q, Ryu H, Lei Y. Metal Oxide Based Non-Enzymatic Electrochemical Sensors for Glucose Detection[J]. Electrochim., 2021, 370: 137 744

[3]

Chiu W T, Chang T F M, Sone M, et al.. Developments of the Electro-active Materials for Non-Enzymatic Glucose Sensing and Their Mechanisms[J]. Electrochem., 2021, 2(2): 347-389

[4]

Balkourani G, Damartzis T, Brouzgou A, et al.. Cost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review[J]. Sensors, 2022, 22(1): 355

[5]

Ebrahim J K. Review on Non-Enzymatic Electrochemical Glucose Sensor of Hybrid Nanostructure Materials[J]. MSARR., 2021, 01(02): 001-017

[6]

Taha M H F, Ashraf H, Caesarendra W. A Brief Description of Cyclic Voltammetry Transducer-Based Non-Enzymatic Glucose Biosensor Using Synthesized Graphene Electrodes[J]. Appl. Syst. Innov., 2020, 3(3): 32

[7]

Wei M, Qiao Y, Zhao H, et al.. Electrochemical Non-Enzymatic Glucose Sensors: Recent Progress and Perspectives[J]. Chem. Commun., 2020, 56: 14 553-14 569

[8]

Wang H, Wan K, Shi X. Recent Advances in Nanozyme Research[J]. Adv. Mater., 2019, 31(45): e1 805 368

[9]

Chen W T, Lo N C, Huang G G, et al.. Nonenzymatic Glucose-Reactive Electrodes Fabricated from Facilely-Precipitated Cobalt Hydroxide, Commercial Graphene Nanopowder and Ionic Liquid Binder[J]. J. Appl. Electrochem., 2021, 51: 1 033-1 045

[10]

Lv X, Tan R, Xu X, et al.. A Highly Sensitive Non-Enzymatic Glucose Sensor Based on CuNi Nanoalloys through One-Step Electrodeposition Strategy[J]. J. Appl. Electrochem., 2022, 52: 895-905

[11]

Kihal R, Fisli H, Chelaghmia M L, et al.. A Novel and Ultrasensitive Non-Enzymatic Electrochemical Glucose Sensor in Real Human Blood Samples Based on Facile One-Step Electrochemical Synthesis of Nickel Hydroxides Nanoparticles onto A Three-Dimensional Lnconel 625 Foam[J]. J. Appl. Electrochem., 2023, 53: 315-329

[12]

Mojarrad A, Sabzi R E, Faraji M. Rational and Low-Cost Preparation of Mo–Pd Nanoalloys Interconnected with Porous Graphite Electrode as Highly Efficient Electrocatalyst for Glucose Oxidation[J]. J. Appl. Electrochem., 2023, 53: 861-874

[13]

He C, Asif M, Liu Q, et al.. Noble Metal Construction for Electrochemical Nonenzymatic Glucose Detection[J]. Adv. Mater. Technol., 2022, 8: 2 200 272

[14]

Niu X, Li X, Pan J, et al.. Recent Advances in Non-Enzymatic Electrochemical Glucose Sensors Based on Non-Precious Transition Metal Materials: Opportunities and Challenges[J]. Rsc. Adv., 2016, 6: 84 893-84 905

[15]

Zhou D, Cao X, Wang Z, et al.. Fe3N-Co2N Nanowires Array: A Non-Noble-Metal Bifunctional Catalyst Electrode for High-Performance Glucose Oxidation and H2O2 Reduction toward Non-Enzymatic Sensing Applications[J]. Chem. Eur. J., 2017, 23: 5 214-5 218

[16]

Tee S Y, Teng C, Ye E. Metal Nanostructures for Non-Enzymatic Glucose Sensing[J]. Mater. Sci. Eng. C, 2017, 70: 1 018-1 030

[17]

Men Y L, Liu P, Liu Y, et al.. Noble-Metal-Free WO3-Decorated Carbon Nanotubes with Strong W-C Bonds for Boosting an Electrocatalytic Glucose Oxidation Reaction[J]. Ind. Eng. Chem. Res., 2022, 61(12): 4 300-4 309

[18]

Li Y, Xie M, Zhang X, et al.. Co-MOF Nanosheet Array: A High-Performance Electrochemical Sensor for Non-Enzymatic Glucose Detection[J]. Sens. Actuators B: Chem., 2019, 278: 126-132

[19]

Qiao Y, Liu Q, Lu S, et al.. High-Performance Non-Enzymatic Glucose Detection: Using a Conductive Ni-MOF as an Electrocatalyst[J]. J. Mater. Chem. B, 2020, 8: 5 411-5 415

[20]

Dong Q, Ryu H, Lei Y. Metal Oxide Based Non-Enzymatic Electrochemical Sensors for Glucose Detection[J]. Electrochim., 2021, 370: 137 744

[21]

Lamas P J, Martínez G, Anorga L, et al.. Glucose Biosensor Based on Disposable Electrochemical Paper-Based Transducers Fully Fabricated by Screen-Printing[J]. Biosens. Bioelectron., 2018, 109: 8-12

[22]

Li X, Zhang M, Hu Y, et al.. Developing A Versatile Electrochemical Platform with Optimized Electrode Configuration through Screen-Printing Technology toward Glucose Detection[J]. Biomed. Microdevices, 2020, 22: 74

[23]

Li C, Xiong J, Zheng C, et al.. Screen-Printing Preparation of High-Performance Nonenzymatic Glucose Sensors Based on Co3O4 Nanoparticles-Embedded N-Doped Laser-Induced Graphene[J]. ACS Appl. Nano. Mater., 2022, 5: 16 655-16 663

[24]

Hu J. The Evolution of Commercialized Glucose Sensors in China[J]. Biosens. Bioelectron., 2009, 24: 1 083-1 089

[25]

Chu Z, Peng J, Jin W. Advanced Nanomaterial Inks for Screen-Printed Chemical Sensors[J]. Sens. Actuators B: Chem., 2017, 243: 919-926

[26]

SalehHudin H S, Mohamad E N, Mahadi W N L, et al.. Multiple-Jet Electrospinning Methods for Nanofiber Processing: A Review[J]. Mater. Manuf. Process, 2018, 33(5): 479-498

[27]

Phuoc P H, Viet M N, Hung C M, et al.. Comparative Study on the Gas-Sensing Performance of ZnO/SnO2 External and ZnO-SnO2 Internal Heterojunctions for Ppb H2S and NO2 Gases Detection[J]. Sens. Actuators B: Chem, 2021, 334: 129 606

[28]

Theron S A, Yarin A L, Zussman E, et al.. Multiple Jets in Electrospinning: Experiment and Modeling[J]. Polymer, 2005, 46: 2 889-2 899

[29]

Liu Z, Chen R, He J. Active Generation of Multiple Jets for Producing Nanomaterials with High Quality and High Throughput[J]. Mater. Des., 2016, 94: 496-501

[30]

Wang S, Yang H, Yi X, et al.. Significant Influence of Controllable Surface Oxygen Vacancies of CuO for Enhancing Sensitivity of Glucose Detection[J]. Appl. Surf. Sci., 2022, 574: 151 649

[31]

Ahmad R, Khan M, Mishra P, et al.. Engineered Hierarchical CuO Nanoleaves Based Electrochemical Nonenzymatic Biosensor for Glucose Detection[J]. J. Electrochem. Soc., 2021, 168: 017 501

[32]

Chakraborty P, Dhar S, Deka N, et al.. Non-Enzymatic Salivary Glucose Detection Using Porous CuO Nanostructures[J]. Sens. Actuators B: Chem., 2020, 302: 127 134

[33]

Chakraborty P, Dhar S, Debnath K, et al.. Non-Enzymatic and Non-Invasive Glucose Detection Using Au Nanoparticle Decorated CuO Nanorods[J]. Sens. Actuators B: Chem., 2019, 283: 776-785

[34]

Wang S, Zheng M, Zhang X, et al.. Flowerlike CuO/Au Nanoparticle Heterostructures for Nonenzymatic Glucose Detection[J]. ACS Appl. Nano Mater., 2021, 4: 5 808-5 815

[35]

Kim K, Kim S, Lee H N, et al.. Electrochemically Derived CuO Nanorod from Copper-Based Metal-Organic Framework for Non-Enzymatic Detection of Glucose[J]. Appl. Surf. Sci., 2019, 479: 720-726

[36]

Liu T, Guo Y, Zhang Z, et al.. Fabrication of Hollow CuO/PANI Hybrid Nanofibers for Non-Enzymatic Electrochemical Detection of H2O2 and Glucose[J]. Sens. Actuators B: Chem., 2019, 286: 370-376

[37]

Zhao Z, Li Q, Sun Y, et al.. Highly Sensitive and Portable Electrochemical Detection System Based on AuNPs@CuO NWs/Cu2O/CF Hierarchical Nanostructures for Enzymeless Glucose Sensing[J]. Sens Actuators B: Chem., 2021, 345: 130 379

[38]

Inyang A, Kibambo G, Palmer M, et al.. One Step Copper Oxide (CuO) Thin Film Deposition for Non-Enzymatic Electrochemical Glucose Detection[J]. Thin Solid Films, 2020, 709: 138 244

[39]

Zhang Y, Liu Y, Su L, et al.. CuO Nanowires Based Sensitive and Selective Non-Enzymatic Glucose Detection[J]. Sens. Actuators B: Chem., 2014, 191: 86-93

[40]

Chiu W T, Chang T F M, Sone M, et al.. Developments of the Electro-active Materials for Non-Enzymatic Glucose Sensing and Their Mechanisms[J]. Electrochem., 2021, 2: 347-389

[41]

Chakraborty P, Dhar S, Deka N, et al.. Non-Enzymatic Salivary Glucose Detection Using Porous CuO Nanostructures[J]. Sens. Actuators B: Chem., 2020, 302: 127 134

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

209

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/