Research Progress of High Entropy Carbides

Ying Qin , Zhanyuan Du , Xinzhuang Liu , Jinghua Yu

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (6) : 1440 -1448.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (6) : 1440 -1448. DOI: 10.1007/s11595-024-3014-3
Advanced Materials

Research Progress of High Entropy Carbides

Author information +
History +
PDF

Abstract

High entropy carbides (HECds) are multi-component carbides consisting of transition metal carbides. HECds are generally composed of five or more metal cations of the equal or near-equal substances, obtaining a single crystal structure. HECds have great potentials for future applications due to excellent mechanical, antioxidant and thermal properties. Due to their complex crystal structures and lattice distortion, computer simulations are widely used to efficiently associate the properties of HECds with the corresponding microstructures. In response to the development of HECds, this article provides an overview of the basic design, preparation process and properties of HECds.

Keywords

high entropy carbides (HECds) / computer simulation / processing / properties

Cite this article

Download citation ▾
Ying Qin, Zhanyuan Du, Xinzhuang Liu, Jinghua Yu. Research Progress of High Entropy Carbides. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(6): 1440-1448 DOI:10.1007/s11595-024-3014-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rost CM, Sachet E, Borman T, et al. Entropy-stabilized Oxides[J]. Nature Communications, 2015, 6(1): 1-8

[2]

George EP, Raabe D, Ritchie RO. High-entropy Alloys[J]. Nature Reviews Materials, 2019, 4(8): 515-534

[3]

Gild J, Samiee M, Braun JL, et al. High-entropy Fluorite Oxides[J]. Journal of the European Ceramic Society, 2018, 38(10): 3 578-3 584

[4]

Xuyen Nguyen T, Patra J, Chang JK, et al. High Entropy Spinel Oxide Nanoparticles for Superior Lithiation-Delithiation Performance[J]. Journal of Materials Chemistry A, 2020, 8(36): 18 963-18 973

[5]

Dąbrowa J, Stygar M, Mikuła A, et al. Synthesis and Microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 High Entropy Oxide Characterized by Spinel Structure[J]. Materials Letters, 2018, 216: 32-36

[6]

Jiang S, Hu T, Gild J, et al. A New Class of High-Entropy Perovskite Oxides[J]. Scripta Materialia, 2018, 142: 116-120

[7]

Zhang RZ, Reece MJ. Review of High Entropy Ceramics: Design, Synthesis, Structure and Properties[J]. Journal of Materials Chemistry A, 2019, 7(39): 22 148-22 162

[8]

Gild J, Zhang Y, Harrington T, et al. High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics[J]. Scientific Reports, 2016, 6(1): 37 946

[9]

Zhang Y, Guo WM, Jiang ZB, et al. Dense High-Entropy Boride Ceramics With Ultra-High Hardness[J]. Scripta Materialia, 2019, 164: 135-139

[10]

Dippo OF, Mesgarzadeh N, Harrington TJ, et al. Bulk High-Entropy Nitrides and Carbonitrides[J]. Scientific Reports, 2020, 10(1): 1-11

[11]

Gild J, Braun J, Kaufmann K, et al. A High-Entropy Silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2[J]. Journal of Materiomics, 2019, 5(3): 337-343

[12]

Sarkar A, Breitung B, Hahn H. High Entropy Oxides: The Role of Entropy, Enthalpy and Synergy[J]. Scripta Materialia, 2020, 187: 43-48

[13]

Ye B, Wen T, Nguyen MC, et al. First-principles Study, Fabrication and Characterization of (Zr0.25Nb0.25Ti0.25V0.25)C High-Entropy Ceramics[J]. Acta Materialia, 2019, 170: 15-23

[14]

Sarker P, Harrington T, Toher C, et al. High-entropy High-Hardness Metal Carbides Discovered by Entropy Descriptors[J]. Nature Communications, 2018, 9(1): 1-10

[15]

L G, L N. Research Status of High Entropy Carbide Powder[J]. Cemented Carbide, 2020, 37(02): 170-179

[16]

Zhang K, Li W, Zeng J, et al. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2 Zr2O7 High-Entropy Transparent Ceramic Using Combustion Synthesized Nanopowder[J]. Journal of Alloys and Compounds, 2020, 817: 153 328

[17]

Dai FZ, Wen B, Sun Y, et al. Theoretical Prediction on Thermal and Mechanical Properties of High Entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by Deep Learning Potential[J]. Journal of Materials Science & Technology, 2020, 43: 168-174

[18]

Tallarita G, Licheri R, Garroni S, et al. Novel Processing Route for The Fabrication of Bulk High-Entropy Metal Diborides[J]. Scripta Materialia, 2019, 158: 100-104

[19]

Oses C, Toher C, Curtarolo S. High-entropy Ceramics[J]. Nature Reviews Materials, 2020, 5(4): 295-309

[20]

Cantor B, Chang ITH, Knight P, et al. Microstructural Development In Equiatomic Multicomponent Alloys[J]. Materials Science and Engineering: A, 2004, 375–377: 213-218

[21]

Zhang LS, Ma GL, Fu LC, et al. Recent Progress in High-Entropy Alloys[J]. Advanced Materials Research, 2013, 631–632: 227-232

[22]

Yu D, Yin J, Zhang B, et al. Recent Development of High-Entropy Transitional Carbides: A Review[J]. Journal of the Ceramic Society of Japan, 2020, 128(7): 329-335

[23]

Zhao S. Lattice Distortion in High-Entropy Carbide Ceramics From First-Principles Calculations[J]. Journal of the American Ceramic Society, 2021, 104(4): 1 874-1 886

[24]

Qin M, Gild J, Hu C, et al. Dual-phase High-Entropy Ultra-High Temperature Ceramics[J]. Journal of the European Ceramic Society, 2020, 40(15): 5 037-5 050

[25]

Feng L, Fahrenholtz WG, Hilmas GE, et al. Synthesis of Single-Phase High-Entropy Carbide Powders[J]. Scripta Materialia, 2019, 162: 90-93

[26]

Li F, Lu Y, Wang XG, et al. Liquid Precursor-Derived High-Entropy Carbide Nanopowders[J]. Ceramics International, 2019, 45(17): 22 437-22 441 Part A

[27]

Lun H, Zeng Y, Xiong X, et al. Synthesis of Carbide Solid Solution With Multiple Components Using Elemental Powder[J]. Advanced Powder Technology, 2020, 31(2): 505-509

[28]

Feng L, Chen WT, Fahrenholtz WG, et al. Strength of Single-Phase High-Entropy Carbide Ceramics up to 2300 °C[J]. Journal of the American Ceramic Society, 2021, 104(1): 419-427

[29]

Castle E, Csanádi T, Grasso S, et al. Processing and Properties of High-Entropy Ultra-High Temperature Carbides[J]. Scientific Reports, 2018, 8(1): 1-12

[30]

Zhou J, Zhang J, Zhang F, et al. High-entropy Carbide: A Novel Class of Multicomponent Ceramics[J]. Ceramics International, 2018, 44(17): 22014-22018

[31]

Feng L, Fahrenholtz WG, Hilmas GE. Low-temperature Sintering Of Single-Phase, High-Entropy Carbide Ceramics[J]. Journal of the American Ceramic Society, 2019, 102(12): 7 217-7 224

[32]

Yan X, Constantin L, Lu Y, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C High-Entropy Ceramics with Low Thermal Conductivity[J]. Journal of the American Ceramic Society, 2018, 101(10): 4 486-4 491

[33]

Csanádi T, Castle E, Reece M J, et al. Strength Enhancement and Slip Behaviour of High-Entropy Carbide Grains During Micro-compression[J]. Scientific Reports, 2019, 9(1): 1-14

[34]

Xiang H, Xing Y, Dai F, et al. High-entropy Ceramics: Present Status, Challenges, and A Look Forward[J]. Journal of Advanced Ceramics, 2021, 10(3): 385-441

[35]

Han X, Girman V, Sedlak R, et al. Improved Creep Resistance of High Entropy Transition Metal Carbides[J]. Journal of the European Ceramic Society, 2020, 40(7): 2 709-2 715

[36]

Braic V, Vladescu A, Balaceanu M, et al. Nanostructured Multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C Hard Coatings[J]. Surface and Coatings Technology, 2012, 211: 117-121

[37]

Wang H, Han X, Liu W, et al. Oxidation Behavior of High-entropy Carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C at 1400–1600°C[J]. Ceramics International, 2021, 47(8): 10 848-10 854

[38]

Ye B, Wen T, Liu D, et al. Oxidation Behavior of (Hf0.2Zr0.2Ta0.2Nb0.2 Ti0.2)C High-entropy Ceramics at 1073–1473 K in Air[J]. Corrosion Science, 2019, 153: 327-332

[39]

Ye B, Wen T, Chu Y. High-temperature Oxidation Behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C High-entropy Ceramics in Air[J]. Journal of the American Ceramic Society, 2020, 103(1): 500-507

[40]

Wang H, Cao Y, Liu W, et al. Oxidation Behavior of (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C-xSiC Ceramics at High Temperature[J]. Ceramics International, 2020, 46(8): 11 160-11 168 Part A

[41]

Wang H, Cao Y, Liu W, et al. Oxidation Behavior of (Hf0.2Ta0.2Zr0.2 Ti0.2Nb0.2)C-xSiC Ceramics at High Temperature[J]. Ceramics International, 2020, 46(8): 11 160-11 168 Part A

[42]

Wang Y, Ma B, Li L, et al. Oxidation Behavior of ZrB2-SiC-TaC Ceramics[J]. Journal of the American Ceramic Society, 2012, 95(1): 374-378

[43]

Wang Y, Zhang R, Zhang B, et al. The Role of Multi-Elements and Interlayer on the Oxidation Behaviour of (Hf-Ta-Zr-Nb)C High Entropy Ceramics[J]. Corrosion Science, 2020, 176: 109 019

[44]

Liu D, Zhang A, Jia J, et al. Phase Evolution and Properties of (VNbTaMoW)C High Entropy Carbide Prepared by Reaction Synthesis[J]. Journal of the European Ceramic Society, 2020, 40(8): 2 746-2 751

[45]

Gild J, Wright A, Quiambao-Tomko K, et al. Thermal Conductivity And Hardness of Three Single-Phase High-Entropy Metal Diborides Fabricated by Borocarbothermal Reduction and Spark Plasma Sintering[J]. Ceramics International, 2020, 46(5): 6 906-6 913

[46]

Wen T, Ye B, Nguyen M C, et al. Thermophysical and Mechanical Properties of Novel High-Entropy Metal Nitride-carbides[J]. Journal of the American Ceramic Society, 2020, 103(11): 6 475-6 489

[47]

Chen H, Xiang H, Dai FZ, et al. High Porosity and Low Thermal Conductivity High Entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C[J]. Journal of Materials Science & Technology, 2019, 35(8): 1700-1705

[48]

Chen H, Xiang H, Dai F-Z, et al. Porous High Entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: A Novel Strategy Towards Making Ultrahigh Temperature Ceramics Thermal Insulating[J]. Journal of Materials Science & Technology, 2019, 35(10): 2 404-2 408

AI Summary AI Mindmap
PDF

248

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/