The Effect of Na2O/B2O3 Composition Ratio on the Structure and Properties of Cu+ Doped Luminescent Glass

Bohan Li , Jinyang Feng , Xiaoping Feng , Xiujian Zhao , Donghua Wu , Xiao Ma

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (6) : 1379 -1390.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (6) : 1379 -1390. DOI: 10.1007/s11595-024-3007-2
Advanced Materials

The Effect of Na2O/B2O3 Composition Ratio on the Structure and Properties of Cu+ Doped Luminescent Glass

Author information +
History +
PDF

Abstract

Cu+-doped alkali borosilicate glasses with different Na2O contents were prepared by the melting method, and the effects of different R values (R=Na2O/B2O3) on the structure, ion presence state and luminescence properties of Cu+-doped alkali borosilicate glasses were investigated. The analysis by FT-IR and Raman spectroscopy shows that, with the increase of R value of the glass, the [BO3] in the structure of Cu+-doped alkali borosilicate glass transforms into [BO4] and the number of non-bridging oxygen in the glass network appears to be slightly increased. The absorption spectra and EPR analysis reveal that the Cu+ content in the glass gradually decreases and the Cu2+ content gradually increases as the R value of the glass increases. XPS and PL tests further indicate that the transformation of the octahedral coordination structure of Cu+ to the octahedral coordination structure of Cu2+ and the cubic coordination structure of Cu+ occurs in the glass as the R value of the glass increases. This transformation can effectively reduce the concentration quenching phenomenon of Cu+ and improve the fluorescence luminescence intensity of the glass samples. Meanwhile, the samples were found to have luminescence tunability as well as good thermal stability.

Keywords

R value / glass structure / Cu ion valence / luminescence

Cite this article

Download citation ▾
Bohan Li, Jinyang Feng, Xiaoping Feng, Xiujian Zhao, Donghua Wu, Xiao Ma. The Effect of Na2O/B2O3 Composition Ratio on the Structure and Properties of Cu+ Doped Luminescent Glass. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(6): 1379-1390 DOI:10.1007/s11595-024-3007-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lv T, Xu X, Yu X, et al. Tunable Mission and Trichromatic White-emitting in Oxyfluoride Glasses by Utilization of Cu+ Ions as Multiple Energy-transfer Creators[J]. J. Am. Ceram. Soc., 2014, 97: 2 897-2 902

[2]

Yasumori A, Tada F, Yanagida S, et al. Yellow Photoluminescence Properties of Copper Ion Doped Phase-separated Glasses in Alkali Borosilicate System[J]. J. Electrochem. Soc., 2012, 159: J143-J147

[3]

Debnath R, Kumar S. Dual Luminescence of Cu+ in Glass[J]. J. Non-Cryst. Solids, 1990, 123: 271-274

[4]

Byme D, Cowley A, Bennett N, et al. The Kuminescent Properties of CuAlO2[J]. J. Mater. Chem. C, 2014, 2: 7 859-7 868

[5]

Tiwari B, Rawat NS, Desai DG, et al. Thermoluminescence Studies on Cu-doped Li2B4O7 Single Crystals[J]. J. Lumin., 2010, 130: 2 076-2 083

[6]

Yang XL, Yan XG, Guo HR, et al. Charged Dinuclear Cu(I) Complexes for Solution-processed Single-emitter Warm White Organic Light-emitting Devices[J]. Dyes Pigm., 2017, 143: 151-164

[7]

Cai Q, Zhou F, Yang N, et al. Enhanced and Shortened Mn2+ Emissions by Cu+ Co-doping in Borosilicate Glasses for W-LEDs[J]. Opt. Mater. Express, 2015, 5: 51-58

[8]

Jiménez JA. Luminescent Properties of Cu+/Sn2+-activated Aluminophosphate Glass[J]. Opt. Mater., 2014, 37: 347-351

[9]

Guo H, Wei R, Liu X. Tunable White Luminescence and Energy Transfer in (Cu+)2, Eu3+ Co-doped Sodium Silicate Glasses[J]. Opt. Lett., 2012, 37: 1 670-1 672

[10]

Xu D, Shi Y, Peng X, et al. Tunable Broad Photoluminescence in Cu+/Mn2+ Co-doped Oxyfluoride Glasses Sintered in Air Atmosphere[J]. J. Lumin., 2018, 202: 186-191

[11]

Jiménez JA. Temperature Dependent Spectroscopic Properties of Cu+ and Dy3+ Co-doped Phosphate Glass: Band Gap Analysis and Cu Nanocluster-enhanced Dy3+ Luminescence[J]. Chem. Phy. Chem., 2019, 20: 399-404

[12]

Tirupataiah C, Narendrudu T, Suresh S, et al. Influence of Valence State of Copper Ions on Structural and Spectroscopic Properties of Multi-component PbO-Al2O3-TeO2-GeO2-SiO2 Glass Ceramic System-A Possible Material for Memory Switching Devices[J]. Opt. Mater., 2017, 73: 7-15

[13]

Jiménez JA. Optical Properties of Cu Nanocomposite Glass Obtained Via CuO and SnO Co-doping[J]. Appl. Phys. A, 2014, 114: 1 369-1 376

[14]

Nogami M, Quang VX, Ohki S, et al. Reduction Mechanisms of Cu2+-doped Na2O-Al2O3-SiO2 Glasses During Heating in H2 Gas[J]. J. Phys. Chem. B, 2018, 122: 1 315-1 322

[15]

Suszynska M, Maczka M, Ptak M, et al. Characterization of Copper Doped Soda Lime Silicate Glass by Selected Methods of the Solid State Physics[J]. J. Non-Cryst. Solids, 2014, 401: 92-95

[16]

Gao J, Ma R, Zhao J, et al. Non-bridging Oxygen Dependent Redox and Spectroscopic Properties of Cu Species in Phosphosilicate Glasses[J]. J. Alloys. Compd., 2016, 664: 331-337

[17]

Wang J, Mao X, Chen S, et al. Luminescent Properties of Cu+ Doped Aluminosilicate Glasses: Effect of Optical Basicity and Doping Content[J]. J. Lumin., 2020, 226: 117 518

[18]

Bray PJ, Dell WJ. 11B NMR Studies and Structural Modeling of Na2O-B2O3-SiO2 Glasses of High Soda Content[J]. J. Non-Cryst. Solids, 1983, 58: 1-16

[19]

El-Egili K. Infrared Studies of Na2O-B2O3-SiO2 and Al2O3-Na2O-B2O3-SiO2 Glasses[J]. Physica B Condens. Matter, 2003, 325: 340-348

[20]

El-Damrawi G, Muller-Warmuth W. 11B, 29Si and 27Al Nuclear Magnetic Resonance Studies of Na2O-Al2O3-B2O3-SiO2 Glasses[J]. Phys. Chem. Glasses, 1999, 34: 52-57

[21]

Biesinger MC. Advanced Analysis of Copper X-ray Photoelectron Spectra[J]. Surf. Interface Anal., 2017, 49: 1 325-1 334

[22]

Zhao Y, Zhang X, Yuan W, et al. Composition Effects on Mechanical Properties of Pristine Sodium Borosilicate Glass[J]. Int. J. Appl. Glass Sci., 2019, 10: 363-370

[23]

Januchta K, To T, Bødker MS, et al. Elasticity, Hardness, and Fracture Toughness of Sodium Aluminoborosilicate Glasses[J]. J. Am. Ceram. Soc., 2019, 102: 4 520-4 537

[24]

Lu P, Cheng J, Wan J. Effects of SnO on Structure and Properties of Borosilicate Glasses[J]. J. Wuhan Univ. Techno., 2008, 23: 547-550

[25]

Parkinson BG, Holland D, Smith ME, et al. The Effect of Oxide Additions on Medium-range Order Structures in Borosilicate Glasses[J]. J. Phys. Condens. Matter, 2007, 19: 415 114

[26]

Santos AG, Moulton BJA, Cabral AA. Discoveries about the Structure of Alkaline Earth-bearing Borosilicate Glasses Doped with TiO2 Revealed by Raman Spectroscopy[J]. J. Non-Cryst. Solids, 2022, 578: 121 349

[27]

Konijnendijk WL, Stevels JM. The Structure of Borosilicate Glasses Studied by Raman Scattering[J]. J. Non-Cryst. Solids, 1976, 20: 193-224

[28]

Colomban P, Schreiber HD. Raman Signature Modification Induced by Copper Nanoparticles in Silicate Glass[J]. J. Raman Spectrosc., 2005, 36: 884-890

[29]

Colomban P. Polymerization degree and Raman Identification of Ancient Glasses Used for Jewelry, Ceramic Enamels and Mosaics[J]. J. Non-Cryst. Solids, 2003, 232: 180-187

[30]

Mcmillan P. Structural Studies of Silicate Glasses and Melts-applications and Limitations of Raman Spectroscopy[J]. Am. Mineral., 1984, 69: 622-644

[31]

Zhao P, Kroeker S, Stebbins JF. Non-bridging Oxygen Sites in Barium Borosilicate Glasses Results from 11B and 17O NMR[J]. J. Non-Cryst. Solids, 2000, 276: 122-131

[32]

Nishida T, Kai N, Takashima Y. Mossbauer and ESR Studies of Ootassium Borate Glasses Containing a Small Amount of Chloride Ions[J]. J. Non-Cryst. Solids, 1981, 43: 107-109

[33]

Bhogi A, Kumar RV, Ahmmad SK, et al. DSC and Optical Studies on BaO-Li2O-B2O3-CuO Glass System[C]. AIP. Conf. Proc., 2016, 1728: 020 583

[34]

Ardelean I, Cora S, Ciceo-lucacel R. Structural Investigations of CuO-B2O3-Bi2O3 Glasses by Means of EPR and FT-IR Spectroscopies[J]. Mod. Phys. Lett. B, 2004, 18: 803-810

[35]

Debnath R, Chaudhuri AK, Luthra JM, et al. High Temperature Thermoluminescence of γ-irradiated Copper Activated Silica Glass and its Application to Dosimetry[J]. J. Lumin., 1995, 65: 279-282

[36]

Herrmann A, Othman HA, Assadi AA, et al. Spectroscopic Properties of Cerium-doped Aluminosilicate Glasses[J]. Opt. Mater. Express, 2015, 5: 720-732

[37]

Dorenbos P. Relating the Energy of the [Xe]5d1 Configuration of Ce3+in Inorganic Compounds with Anion Polarizability and Cation Electronegativity[J]. Phys. Rev. B, 2002, 65: 235 110

[38]

Debnath R, Das SK. Site-dependent Luminescence of Cu+ Ions in Silica Glass[J]. Chem. Phys. Lett., 1989, 155: 52-58

[39]

Ikeda H, Murata T, Fujino S. Photoluminescence Characteristics of Sintered Silica Glass Doped with Cu Ions Using Mesoporous SiO2-PVA Nanocomposite[J]. Mater. Chem. Phys., 2015, 162: 431-435

[40]

Xie RJ, Hirosaki N, Kimura N, et al. 2-phosphor-converted White Light-emitting Diodes Using Oxynitride/Nitride Phosphors[J]. Appl. Phys. Lett., 2007, 90: 191 101

[41]

Lu F, Bai L, Dang W, et al. Structure and Photoluminescence of Eu2+ Doped Sr2Al2SiO7 Cyan-Green Emitting Phosphors[J]. ECS. J. Solid State Soc., 2014, 4: 27-30

AI Summary AI Mindmap
PDF

216

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/