Magneto-optical Kerr Effect of Mono-layer NiX2(X=Cl, Br, I): A Density Functional Theory Study

Qingqian Fan , Chaochao Du

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (5) : 1121 -1128.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (5) : 1121 -1128. DOI: 10.1007/s11595-024-2979-2
Advanced Materials

Magneto-optical Kerr Effect of Mono-layer NiX2(X=Cl, Br, I): A Density Functional Theory Study

Author information +
History +
PDF

Abstract

The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic, magnetic, and magneto-optical properties of the NiX2 (X=Cl, Br, and I) single layer. The first-principles calculation demonstrates that these compounds are ferromagnetic indirect semiconductors, and the energy band gaps of NiX2 for X=Cl, Br, and I are 3.888, 3.134, and 2.157 eV, respectively. The magnetic moments of Ni atoms in NiX2 monolayer are 1.656, 1.588, 1.449 µB, and their magneto-crystalline anisotropy energies are 0.167, 0.029, 0.090 meV, respectively. Based on the macro-linear response theory, we systematically studied the influences of the external magnetic field and out-of-plane strain on the magneto-optical Kerr effect (MOKE) spectrum of the NiX2 single layer. It is found that, when the external magnetic field is perpendicular to the sample plane, the value of the Kerr rotation angle reaches the maximum, and the single-layer NiI2 material has a Kerr rotation angle of 1.89° at the photon energy of 1.986 eV. Besides, the Kerr rotation spectrum of NiCl2 and NiBr2 monolayers redshift as the out-of-plane strain increases, while NiI2 monolayer blueshifts. Accurate computation of the MOKE spectrum of NiX2 materials provides an opportunity for applications of 2D magnetic material ranging from sensing to data storing.

Keywords

magneto-optical Kerr effect (MOKE) / first-principles calculations / external magnetic field / out-of-plane strain

Cite this article

Download citation ▾
Qingqian Fan, Chaochao Du. Magneto-optical Kerr Effect of Mono-layer NiX2(X=Cl, Br, I): A Density Functional Theory Study. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(5): 1121-1128 DOI:10.1007/s11595-024-2979-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu M, Li Z L, Cao T, et al. Physical Origin of Giant Excitonic and Magneto-Optical Responses in Two-Dimensional Ferromagnetic Insulators[J]. Nature Communications, 2019, 10(1): 1-8.

[2]

Henriques J C, Catarina G, Costa A T, et al. Excitonic Magneto-Optical Kerr Effect in Two-Dimensional Transition Metal Dichalcogenides Induced by Spin Proximity[J]. Physical Review B, 2020, 101(4): 045 408

[3]

Lan T S, Ding B F, Liu B L. Magneto-Optical Effect of Two-Dimensional Materials and Related Applications[J]. Nano Select, 2020, 1(3): 298-310.

[4]

Sun Z P, Amos M, Wang F. Optical Modulators with 2D Layered Materials[J]. Nature Photonics, 2016, 10(4): 227-238.

[5]

Han W, Kawakami R K, Gmitra M, et al. Graphene Spintronics[J]. Nature Nanotechnology, 2014, 9(10): 794-807.

[6]

Novoselov K S, Mishchenko A, Carvalho A, et al. 2D Materials and Van Der Waals Heterostructures[J]. Science, 2016, 353(6298): aac9 439

[7]

Gong C, Li L, Li Z L, et al. Discovery of Intrinsic Ferromagnetism in Two-Dimensional Van Der Waals Crystals[J]. Nature, 2017, 546: 265-269.

[8]

Khokhlov N E, Khramova A E, Nikolaeva E P, et al. Electric-Field-Driven Magnetic Domain Wall as A Microscale Magneto-Optical Shutter[J]. Scientific Reports, 2017, 7(1): 264

[9]

Shimano R, Yumoto G, Yoo J Y, et al. Quantum Faraday and Kerr Rotations in Graphene[J]. Nature Communications, 2013, 4(1): 1 841

[10]

Crassee I, Levallois J, Walter A L, et al. Giant Faraday Rotation in Single-and Multilayer Graphene[J]. Nature Physics, 2011, 7: 48-51.

[11]

Duan X D, Wang C, Pan A L, et al. Two-Dimensional Transition Metal Dichalcogenides as Atomically Thin Semiconductors: Opportunities and Challenges[J]. Chemical Society Reviews, 2015, 44: 8 859-8 876.

[12]

Stier A V, McCreary K M, Jonker B T, et al. Exciton Diamagnetic Shifts and Valley Zeeman Effects in Monolayer WS2 and MoS2 to 65 Tesla[J]. Nature Communications, 2016, 7: 10 643.

[13]

Li L, Yu Y, Ye G J, et al. Black Phosphorus Field-Effect Transistors[J]. Nature Nanotechnology, 2014, 9(5): 372

[14]

Guo G, Bi G, Cai C, et al. Effects of the External Magnetic Field and Out-Of-Plane Strain on Magneto-Optical Kerr Spectra in CrI3 Monolayer[J]. Journal of Physics-Condensed Matter, 2018, 30(28): 285 303

[15]

Kumar G V, Guo G Y. Magnetism and Magneto-Optical Effects in Bulk and Few-Layer CrI3: A Theoretical GGA+ U Study[J]. New Journal of Physics, 2019, 21(5): 053 012

[16]

Ostwal V, Shen T, Appenzeller J. Efficient Spin-Orbit Torque Switching of the Semiconducting Van Der Waals Ferromagnet Cr2Ge2Te6[J]. Advanced Materials, 2020, 32(7): 1 906 021

[17]

Huang B, Clark G, Navarro-Moratalla E, et al. Layer-Dependent Ferromagnetism in A Van Der Waals Crystal Down to the Monolayer Limit[J]. Nature, 2017, 546: 270-273.

[18]

Geim A K, Grigorieva I V. Van Der Waals Heterostructures[J]. Nature, 2013, 499(7459): 419-425.

[19]

Lu M, Yao Q, Xiao C, et al. Mechanical, Electronic, and Magnetic Properties of NiX2(X= Cl, Br, I) Layers[J]. ACS Omega, 2019, 4(3): 5 714-5 721.

[20]

Chuang S L. Physics of Photonic Devices, 2012 New York: John Wiley & Sons.

[21]

Kittel C. Optical Rotation by Ferromagnetic Substances[C]. Physical Review. One Physics Ellipse, 1951

[22]

Kunes J, Novák P. Full-Potential Linearized Augmented-Plane-Wave Calculation of the Magneto-Optical Kerr Effect in Fe, Co, and Ni[J]. Journal of Physics: Condensed Matter, 1999, 11(32): 6 301-6 309.

[23]

Hulme H R. The Faraday Effect in Ferromagnetics[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1932, 135(826): 237-257.

[24]

Argyres P N. Theory of the Faraday and Kerr Effects in Ferromagnetics[J]. Physical Review, 1955, 97(2): 334-345.

[25]

Erskine J L, Stern E A. Magneto-Optical Kerr Effects in Gadolinium[J]. Physical Review B, 1973, 8(3): 1 239-1 255.

[26]

Antonov V, Harmon B, Yaresko A. Electronic Structure and Magneto-Optical Properties of Solids, 2004 New York, Boston, Dordrecht, London, Moscow: Springer Science &Business Media.

[27]

Guo G Y, Ebert H. Band-Theoretical Investigation of the Magneto-Optical Kerr Effect in Fe and Co Multilayers[J]. Physical Review B, 1995, 51(18): 12 633-12 643.

[28]

Stroppa A, Picozzi S, Continenza A, et al. Magneto-Optical Properties of (Ga, Mn) As: An Ab Initio Determination[J]. Physical Review B, 2008, 77(3): 035 208

[29]

Kubo R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems[J]. Journal of the Physical Society of Japan, 1957, 12(6): 570-586.

[30]

Wang C P, Callaway J. Band Structure of Nickel: Spin-Orbit Coupling, the Fermi Surface, and the Optical Conductivity[J]. Physical Review B, 1974, 9(11): 4 897-4 907.

[31]

Rathgen H, Katsnelson M I. Katsnelson and Symmetry Assumptions, Kramers–Kronig Transformation and Analytical Continuation in Ab Initio Calculations of Optical Conductivities[J]. Physica Scripta, 2004, 2004(T109): 170-174.

[32]

Blaha P, Schwarz K, Madsen G K, et al. WIEN2k: An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties, 2001 Vienna: Vienna University of Technology.

[33]

Singh D J, Nordstrom L. Planewaves Pseudopotentials and the LAPW Method, 2006 2nd New York: Springer.

[34]

Ferrari A, Braibanti A, Bigliardi G. Refinement of the Crystal Structure of Nicl2 and Unit-Cell Parameters of Some Anhydrous Chlorides of Divalent Metals[J]. Acta Crystallographica, 1963, 16(8): 846-847.

[35]

Kulish V V, Huang W. Single-Layer Metal Halides MX2(X= Cl, Br, I): Stability and Tunable Magnetism from First Principles and Monte Carlo Simulations[J]. Journal of Materials Chemistry C, 2017, 5(34): 8 734-8 741.

[36]

Botana A S, Norman M R. Electronic Structure and Magnetism of Transition Metal Dihalides: Bulk to Monolayer[J]. Physical Review Materials, 2019, 3: 044 001.

[37]

Mushtaq M, Zhou Y, Xiang X. NiX2(X = Cl and Br) Sheets as Promising Spin Materials: A First-Principles Study[J]. The Royal Society of Chemistry, 2017, 7: 22 541-22 547.

[38]

Moore M W, Wood T E, Day P. Optical and Magneto-Optical Study of the Magnetic Phase Diagram and Incommensurate Magnetic Phase of Nibr2 and Ni1−xZn.Br2[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1981, 77: 1 611-1 619.

[39]

Day P, Turner K, Visser D, et al. Neutron Diffraction and Magneto-Optical Study of the Effect of Chloride Doping. On the Incommensurate Magnetic Phase of NiBr2[J]. Physical Status Solidi(b), 1982, 113(2): 623-634.

[40]

Goodenough J B. Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M (II)] MnO3[J]. Physical Review, 1955, 100(2): 564

[41]

Kanamori J. Crystal Distortion in Magnetic Compounds[J]. Journal of Applied Physics, 1960, 31(5): S14-S23.

[42]

Anderson P W. New Approach to the Theory of Superexchange Interactions[J]. Physical Review, 1959, 115(1): 2

AI Summary AI Mindmap
PDF

219

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/