Mixed Alkali-zinc Effects on Thermo-mechanical Properties in Borosilicate Glasses

Guanzhou Xiao , Yunhang Tao , Hemin Zhou , Qingshuang Zheng , Ang Qiao , Haizheng Tao

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (5) : 1093 -1099.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (5) : 1093 -1099. DOI: 10.1007/s11595-024-2975-6
Advanced Materials

Mixed Alkali-zinc Effects on Thermo-mechanical Properties in Borosilicate Glasses

Author information +
History +
PDF

Abstract

A series of mixed alkali-zinc borosilicate glasses with various r values (r = molar ratio of [ZnO] / ([R2O]+[ZnO])) from 0.00 to 1.00 were fabricated to probe the mixed alkali-zinc effects on thermo-mechanical properties. The nonlinear evolution of glass transition temperature (T g) with the addition of ZnO is ascribed to the competition of two converse factors, i e, the T g depression as one of the colligative properties for a solution, on the one hand, and the enhancement of T g due to the higher field strength of zinc cations compared to that of alkali ions. However, the nonlinear evolution of elastic moduli and coefficients of thermal expansion with r is attributed to the variance of intermediate-range clusters, which is confirmed by infrared and Raman scattering spectra. These findings are very helpful in tailoring the performance of borosilicate glasses.

Keywords

glass transition temperature / elastic moduli / coefficient of thermal expansion / borosilicate glass

Cite this article

Download citation ▾
Guanzhou Xiao, Yunhang Tao, Hemin Zhou, Qingshuang Zheng, Ang Qiao, Haizheng Tao. Mixed Alkali-zinc Effects on Thermo-mechanical Properties in Borosilicate Glasses. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(5): 1093-1099 DOI:10.1007/s11595-024-2975-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kato Y, Yamazaki H, Watanabe T, et al. Early Stage of Phase Separation in Aluminoborosilicate Glass for Liquid Crystal Display Substrate[J]. J. Am. Ceram. Soc., 2005, 88(2): 473-477.

[2]

Cassingham N J, Stennett M C, Bingham P A, et al. The Structural Role of Zn in Nuclear Waste Glasses[J]. Int. J. Appl. Glass Sci., 2011, 2(4): 343-353.

[3]

Yan J J, Zhang T, Tao H Z, et al. Structure, Crystallization, and Performances of Alkaline-Earth Boroaluminosilicate Sealing Glasses for SOFCs[J]. J. Am. Ceram. Soc., 2021, 104(6): 2 560-2 570.

[4]

Li A, Wang M T, Li M, et al. The Effect of Mixed Alkali on Structural Changes and Ionic Migration Characteristics in Zinc Borate Glasses[J]. Mater. Chem. Phys., 2018, 217: 519-526.

[5]

Dejneka M, Kiczenski T J. Springer Handbook of Glass, 2019 Switzerland: Springer Nature.

[6]

Xie J, Tang H R, Wang J, et al. Network Connectivity and Properties of Non-alkali Aluminoborosilicate Glasses[J]. J. Non-Cryst. Solids, 2018, 481: 403-408.

[7]

Du R, Han J J, Cao X, et al. Network Structure and Chemical Durability of Non-alkali Aluminoborosilicate Glasses Containing ZnO[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2020, 35(2): 377-383.

[8]

Besmann T M, Spear K E. Thermochemical Modeling of Oxide Glasses[J]. J. Am. Ceram. Soc., 2004, 85(12): 2 887-2 894.

[9]

Boizot B, Ollier N, Olivier F, et al. Irradiation Effects in Simplified Nuclear Waste Glasses[J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 2005, 240(1–2): 146-151.

[10]

Gui H, Lin C W, Zhang Q, et al. Glass Forming, Crystallization, and Physical Properties of MgO-Al2O3-SiO2-B2O3 Glass-Ceramics Modified by ZnO Replacing MgO[J]. J. Eur. Ceram. Soc., 2019, 39(4): 1 397-1 410.

[11]

Szumera M, Wacławska I, Sułowska J. Influence of CuO and ZnO Addition on the Multicomponent Phosphate Glasses: Spectroscopic Studies[J]. J. Mol. Struct., 2016, 1114: 78-83.

[12]

Naresh P, Kavitha B, Inamdar H K, et al. Modifier Role of ZnO on the Structural and Transport Properties of Lithium Borotellurite Glasses[J]. J. Non-Cryst. Solids, 2019, 514: 35-45.

[13]

Zheng Q J, Potuzak M, Mauro J C, et al. Composition-Structure-Property Relationships in Boroaluminosilicate Glasses[J]. J. Non-Cryst. Solids, 2012, 358(6–7): 993-1.

[14]

Liu S, Zhao G, Ying H, et al. Effects of Mixed Alkaline Earth Oxides Additive on Crystallization and Structural Changes in Borosilicate Glasses[J]. J. Non-Cryst. Solids, 2008, 354(10–11): 956-961.

[15]

Jaccani S P, Huang L P. Understanding Sodium Borate Glasses and Melts from Their Elastic Response to Temperature[J]. Int. J. Appl. Glass Sci., 2016, 7(4): 452-463.

[16]

Song W L, Zhong Y, Xiang J. Mechanical Parameters Identification for Laminated Composites Based on the Impulse Excitation Technique[J]. Compos. Struct., 2017, 162: 255-260.

[17]

Smedskjaer M M, Mauro J C, Sen S, et al. Quantitative Design of Glassy Materials Using Temperature-Dependent Constraint Theory[J]. Chem. Mater., 2010, 22(18): 5 358-5 365.

[18]

Mauro J C, Gupta P K, Loucks R J. Composition Dependence of Glass Transition Temperature and Fragility. II. A Topological Model of Alkali Borate Liquids[J]. J. Chem. Phys., 2009, 130(23): 234 503

[19]

Yun Y H, Bary P J. Nuclear Magnetic Resonance Studies of the Glasses in the System Na2O-B2O3-SiO2[J]. J. Non-Cryst. Solids, 1978, 27(3): 363-380.

[20]

Zheng Q J, Youngman R E, Hogue C L, et al. Structure of Boroaluminosilicate Glasses: Impact of [Al2O3]/[SiO2] Ratio on the Structural Role of Sodium[J]. Phys. Rev. B, 2012, 86(5): 4 583-4 586.

[21]

Januchta K, Bauchy M, Youngman R E, et al. Modifier Field Strength Effects on Densification Behavior and Mechanical Properties of Alkali Aluminoborate Glasses[J]. Phys. Rev. Mater., 2017, 1(6): 063 603

[22]

Weigel C, Charles L, Vialla R, et al. Elastic Moduli of xAlSiO4 Aluminosilicate Glasses: Effects of Charge-Balancing Cations[J]. J. Non-Cryst. Solids, 2016, 447: 267-272.

[23]

Jenkins Brooke H D. Colligative Properties: Freezing Point[M], 2008 Oxford: Blackwell.

[24]

Rouxel T. Elastic Properties and Short- to Medium-Range Order in Glasses[J]. J. Am. Ceram. Soc., 2007, 90(10): 3 019-3 039.

[25]

Ke Z K, Cao X, Shan C L, et al. The Effect of Alkali Metal Oxide on the Properties of Borosilicate Fireproof Glass: Structure, Thermal Properties, Viscosity, Chemical Stability[J]. Ceram. Int., 2021, 47(14): 19 605-19 613.

[26]

Hao J, Zan Q F, Ai D S, et al. Theoretical Calculations of the Thermal Expansion Coefficient of Glass-Ceramic Sealing Materials in Solid Oxide Electrolysis Cell[J]. J. Non-Cryst. Solids, 2013, 361: 86-92.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/