Preparation and Photostriction Properties of BiFeO3-BaTiO3 Ceramics

Zewei Zheng , Liqiang Zhang , Chen Chen , Minghe Cao , Zhiguo Yi , Hanxing Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (5) : 1079 -1086.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (5) : 1079 -1086. DOI: 10.1007/s11595-024-2973-8
Advanced Materials

Preparation and Photostriction Properties of BiFeO3-BaTiO3 Ceramics

Author information +
History +
PDF

Abstract

Under illumination by 405, 520 and 655 nm monochromatic visible light (light intensity of 30 kW/m2), large photostriction (ΔL/L) of 0.19%, 0.13% and 0.26% for 67BiFeO3-33BaTiO3(67BF-33BT) lead-free ferroelectric ceramics are obtained, respectively. By studying the ferroelectric and photoelectric properties in conjunction with in situ Raman spectroscopy, it is found that the photostrictive effect of 67BF-33BT is not caused by the electrical strain induced by abnormal photovoltaic voltage, but related to the optical induced oxygen octahedral distortion. The 67BF-33BT lead-free ferroelectric material with excellent photostrictive response in the visible light region is expected to play an important role in the field of optical drive electromechanical devices.

Keywords

ferroelectric ceramics / photostrictive effect / visible light response

Cite this article

Download citation ▾
Zewei Zheng, Liqiang Zhang, Chen Chen, Minghe Cao, Zhiguo Yi, Hanxing Liu. Preparation and Photostriction Properties of BiFeO3-BaTiO3 Ceramics. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(5): 1079-1086 DOI:10.1007/s11595-024-2973-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kundys B, Viret M, Colson D, et al. Light-induced Size Changes in BiFeO3 Crystals[J]. Nature Materials, 2010, 9(10): 803-805.

[2]

Sun D C, Tong L Y. Theoretical Investigation on Wireless Vibration Control of Thin Beams Using Photostrictive Actuators[J]. Journal of Sound and Vibration, 2008, 312(1–2): 182-194.

[3]

Chen C, Yi Z. Photostrictive Effect: Characterization Techniques, Materials, and Applications[J]. Advanced Functional Materials, 2021, 31(22): 2 010 706

[4]

Wang Z, Li K, He Q, et al. A Light-powered Ultralight Tensegrity Robot with High Deformability and Load Capacity[J]. Advanced Materials, 2019, 31(7): 1 806 849-1 806 849.

[5]

Zhengming D, Xiu L, Chen C, et al. Photostriction of NBT-BNT Ceramics. Journal of Inorganic Materials, 2021, 36(3): 277-282.

[6]

Cheng F, Yin R, Zhang Y, et al. Fully Plastic Microrobots Which Manipulate Objects Using Only Visible Light[J]. Soft Matter, 2010, 6(15): 3 447-3 449.

[7]

Uchino K, Poosanaas P, Tonooka K. Photostrictive Actuators[J]. Ferroelectrics, 2001, 264(1): 303-308.

[8]

Yu Y, Maeda T, Maniya J I, et al. Photomechanical Effects of Ferroelectric Liquid-crystalline Elastomers Containing Azobenzene Chromophores[J]. Angewandte Chemie International Edition, 2007, 46(6): 881-883.

[9]

Datskos P G, Rajic S, Sepaniak M J, et al. Chemical Detection Based on Adsorption-induced and Photoinduced Stresses in Microelectromechanical Systems Devices[J]. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena: an Official Journal of the American Vacuum Society, 2001, 19(4): 1 173-1 179.

[10]

Van D V G, Prins W. Photomechanical Energy Conversion in a Polymer Membrane[J]. Nature Physical Science, 1971, 230(11): 70-72.

[11]

Lagowski J, Gatos H C. Photomechanical Effect in Noncentrosymmetric Semiconductors-CdS[J]. Applied Physics Letters, 1972, 20(1): 14-16.

[12]

Agowski J, Gatos H C. Photomechanical Vibration of Thin Crystals of Polar Semiconductors[J]. Surface Science, 1974, 45(2): 353-370.

[13]

Uchino K, Aizawa M. Photostrictive Actuator using PLZT Ceramics[J]. Japanese Journal of Applied Physics, 1985, 24(S3): 139

[14]

Li X, Chen C, Zhang F, et al. Large Visible-light-driven Photostriction in Bi(Ni2/3Nb1/3)O3–PbTiO3 Ferroelectrics[J]. APL Materials, 2020, 8(6): 061 111

[15]

Fang H, Chen C, Zhang F, et al. Significant Photostrictive Response in Lead-free Bi0.5Na0.5TiO3 Ceramics Under Visible Light Illumination[J]. Journal of the American Ceramic Society, 2021, 104(8): 4 033-4 040.

[16]

Zhang H, Jo W, Wang K, et al. Compositional Dependence of Dielectric and Ferroelectric Properties in BiFeO3-BaTiO3 Solid Solutions[J]. Ceramics International, 2014, 40(3): 4 759-4 765.

[17]

Kumar M, Shankar S, Brijmohan, et al. Impedance Spectroscopy and Conductivity Analysis of Multiferroic BFO-BT Solid Solutions[J]. Physics Letters A, 2017, 381(4): 379-386.

[18]

Kader S M A, Ruth D E J, Babu M V G, et al. Significant Enhancement in Magnetization Value of the K-doped 0.75BiFeO3–0.25BaTiO3 Lead-free Multiferroics[J]. Materials Letters, 2017, 190: 270-272.

[19]

Li Y, Adamo C, Chen P, et al. Giant Optical Enhancement of Strain Gradient in Ferroelectric BiFeO3 Thin Films and Its Physical Origin[J]. Scientific Reports, 2015, 5(1): 16 650

[20]

Wen H, Chen P, Cosgriff M P, et al. Electronic Origin of Ultrafast Photoinduced Strain in BiFeO3[J]. Physical Review Letters, 2013, 110(3): 037 601

[21]

Kundys B, Viret M, Meny C, et al. Wavelength Dependence of Photoinduced Deformation in BiFeO3[J]. Physical Review B, 2012, 85(9): 092 301

[22]

Schick D, Herzog M, Wen H, et al. Localized Excited Charge Carriers Generate Ultrafast Inhomogeneous Strain in The Multiferroic BiFeO3[J]. Physical Review Letters, 2014, 112(9): 097 602

[23]

Daranciang D, Highland M J, Wen H, et al. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers[J]. Physical Review Letters, 2012, 108(8): 087 601

[24]

Li B, Zheng T, Wu J. Decoding Thermal Depolarization Temperature in Bismuth Ferrite–Barium Titanate Relaxor Ferroelectrics with Large Strain Response[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37 422-37 432.

[25]

Zhu L F, Zhang B P, Duan J Q, et al. Enhanced Piezoelectric and Ferroelectric Properties of BiFeO3-BaTiO3 Lead-free Ceramics by Optimizing the Sintering Temperature and Dwell Time[J]. Journal of the European Ceramic Society, 2018, 38(10): 3 463-3 471.

[26]

Wang L, Liang R, Zhou Z, et al. Thermally Stable Electrostrain in BiFeO3-BaTiO3-based High Temperature Lead-free Piezoceramics[J]. Applied Physics Letters, 2019, 115(8): 082 902

[27]

Li C, Zheng T, Wu J. Competitive Mechanism of Temperature-dependent Electrical Properties in BiFeO3-BaTiO3 Ferroelectrics Controlled by Domain Evolution[J]. Acta Materialia, 2021, 206: 116 601.

[28]

Akram F, Malik R A, Song T K, et al. Thermally-stable High Dielectric Properties of (1−x)(0.65Bi1.05FeO3–0.35BaTiO3 )–xBiGaO3 Piezoceramics[J]. Journal of the European Ceramic Society, 2019, 39(7): 2 304-2 309.

[29]

Chaudhary P, Kumar M, Dabas S, et al. Enhanced Magneto-electric Coupling and Energy Storage Analysis in (BiFeO3–BaTiO3)/CoFe2O4 Composites[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 13 910-13 923.

[30]

Shi Y, Yan F, He X, et al. Performances Variations of BiFeO3-based Ceramics Induced by Additives with Diverse Phase Structures[J]. CrystEngComm, 2021, 23(7): 1 596-1 603.

[31]

Zhu L F, Zhang B P, Li S, et al. Enhanced Piezoelectric Properties of Bi (Mg1/2Ti1/2)O3 Modified BiFeiO3–BaTiO3 Ceramics near the Morphotropic Phase Boundary[J]. Journal of Alloys and Compounds, 2016, 664: 602-608.

[32]

Li B, Zheng T, Wu J. Decoding Thermal Depolarization Temperature in Bismuth Ferrite–Barium Titanate Relaxor Ferroelectrics with Large Strain Response[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37 422-37 432.

[33]

Li X, Chen C, Zhang F, et al. Large Visible-light-driven Photostriction in Bi (Ni2/3Nb1/3) O3–PbTiO3 Ferroelectrics[J]. APL Materials, 2020, 8(6): 061 111

[34]

Boda M A, He X, Chen C, et al. Visible Light Photostriction in Kagome Staircase Zinc Ortho-vanadate[J]. Applied Physics Letters, 2021, 119(22): 221 905

[35]

Wei T C, Wang H P, Liu H J, et al. Photostriction of Strontium Ruthenate[J]. Nature Communications, 2017, 8(1): 15 018

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/