Mechanism in Solidification of a Ternary Nickel Based Alloy

Mi Tian , Bo Cheng

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (4) : 1018 -1024.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (4) : 1018 -1024. DOI: 10.1007/s11595-024-2965-8
Metallic Materials

Mechanism in Solidification of a Ternary Nickel Based Alloy

Author information +
History +
PDF

Abstract

The experiment employed the use of melt purification and cyclic superheating technique to achieve maximum undercooling of Ni65Cu31Co4 alloy at 300K. Simultaneously, high-speed photography techniques were used to capture the process of alloy liquid phase interface migration, and analyzed the relationship between the shape characteristics of the front end of alloy solidification and undercooling. The microstructure of the alloy was observed through metallographic microscopy, and the micro-morphological characteristics and evolution of the rapidly solidified microstructure were systematically studied. It is found that the grain refinement mechanism of Ni-Cu-Co ternary alloy is similar to that of Ni-Cu binary alloy. Grain refinement at low undercooling is caused by intense dendritic remelting, while grain refinement at high undercooling is attributed to recrystallization, driven by the stress and plastic strain accumulated from the interaction of liquid flow and primary dendrites caused by rapid solidification. It also shows that the addition of the third element Co plays a significant role in solidification rate and re-ignition effect.

Keywords

undercooling / recalescence / Ni-Cu-Co ternary alloy / grain refinement / recrystallization

Cite this article

Download citation ▾
Mi Tian, Bo Cheng. Mechanism in Solidification of a Ternary Nickel Based Alloy. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(4): 1018-1024 DOI:10.1007/s11595-024-2965-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kurz W, Fisher DJ. Fundamentals of Solidification[M], 1998 4th Revised Edition Switzerland: Trans. Tech. Publications Ltd.. 1-292.

[2]

Rappaz M. Modelling of Microstructure of Formation in Solidification Process[J]. Inter. Mater. Rev., 1989, 34: 93-123.

[3]

Beckermann C, Viskanta R. Mathematical Modeling of Transport during Alloy Solidification[J]. Appl. Mech. Rev., 1993, 46: 1-27.

[4]

Herlach DM. Non-equilibrium Solidification of Undercooled Metallic Melts[J]. Mater. Sci. Eng. R., 1994, 12: 177-272.

[5]

Mullis AM, Cochrane RF. Grain Refinement and the Stability of Dendrites Growing into Undercooled Pure Metals and Alloys[J]. J. Appl. Phys., 1997, 82(8): 3783-3790.

[6]

Wei B, Yang C, Zhou Y. High Undercooling and Rapid Solidification of Ni-32.5%Sn Eutectic Alloy[J]. Acta Metall. Mater., 1991, 39(6): 1249-1258.

[7]

Gleiter H. Nanocrystalline Materials[J]. Mater. Sci. Eng. R., 1989, 33: 223-315.

[8]

Dragnevski KI, Mullis AM, Cochrane RF. The Effect of Experimental Variables on the Levels of Melt Undercooling[J]. Materials Science and Engineering: A., 2004, 375–377: 485-487.

[9]

Perepezko JH. Nucleation Reactions in Undercooled Liquids[J]. Mater. Sci. Eng., 1984, 65: 125-135.

[10]

Zheng HX, Yu Y, Li JG. Microstructural Evolution of Undercooled Ni-40wt%Pb Hypermonotectic Alloy[J]. Mater. Sci. Forum., 2005, 475: 2651-2654.

[11]

Li JF, YL, Yang GC, et al. Directional Solidification of Undercooled Melt[J]. Progress in Natural Science, 1997, 7(6): 98-103.

[12]

Kattamis TZ. Mechanism of Establishment of Cast Microstructure during Solidification of Highly Undercooled Melts[J]. J. Cryst. Growth, 1976, 34(2): 215-220.

[13]

Li J, Liu Y, Lu Y, Yang G, Zhou Y. Structural Evolution of Undercooled Ni-Cu Alloys[J]. J. Cryst. Growth., 1998, 192: 462-470.

[14]

Powell L. The Undercooling of Silver[J]. J. Aust. Inst. Met., 1965, 10: 3 223.

[15]

Jones B, Weston G. Grain Refinement in Undercooled Copper[J]. J. Aust. Inst. Met., 1970, 15: 3167.

[16]

Horvay G. The Tension Field Created by a S pherical Nucleus Freezing into Its Less Dense Undercooled Melt[J]. Int. J. Heat Mass Transfer., 1965, 8(2): 195-243.

[17]

Willnecker R, Herlach DM, Feuerbacher B. Grain Refinement Induced by a Critical Crystal Growth Velocity in Undercooled Melts[J]. Appl. Phys. Lett., 1990, 56(4): 324-326.

[18]

Lu SY, Li JF, Zhou YH. Grain Refinement in the Solidification of Undercooled Ni-Pd Alloys[J]. Journal of Crystal Growth, 2007, 309: 103-111.

[19]

Boettinger WJ, Coriell SR, Trivedi R. Mehrabian R, Parrish P A. Rapid Solidification Processing: Principles and Technologies IV[M], 1988 Baton Rouge, LA: Claitor’s Pulishing Division. 13-18.

[20]

Galenko PK, Danilov DA. Local Nonequilibrium Effect on Rapid Dendrite Growth in a Binary Alloy Melt[J]. Phys. Lett. A, 1997, 235: 271-280.

[21]

Dhj AK, Dahle H Thevik. Modelling the Fluid Flow Induced Stress and Collappse in a Dentritic Network[J]. Metall. Mater. Trans. B., 1999, 30: 287-293.

[22]

Farvid SS, Radovanovic PV. Phase Transformation of Colloidal In2O3 Nanocrystals Driven by the Interface Nucleation Mechanism: a Kinetic Study[J]. J. Am. Chem. Soc., 2012, 134(16): 7015-7024.

[23]

Feurer U. Mathematisches Modell Der Warmrissneigung Von Binaeren Aluminnium Legierungen[J]. Giesserei forsch., 1976, 2: 75.

[24]

Rappaz M, Gremaud M, Drezet JM. A New Hot-tearing Criterion[J]. Metall. Mater. Trans., 1999, A30: 449.

[25]

Castle EG, Mullis AM, Cochrane RF. Mechanism Selection for Spontaneous Grain Refinement in Undercooled Metallic Melts[J]. Acta Materialia, 2014, 77: 76-84.

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/