Effect of Fe2O3 on the Structure, Physical Properties and Crystallization of CaO-Al2O3-SiO2 Glass

Feng Zhang , Dehua Xiong , Jun Xie , Jihong Zhang , Jianjun Han , Dequan Chen , Zhongquan Wen , Zhenhua Fan , Lina Chen , Tengfei Sun

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (4) : 954 -961.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (4) : 954 -961. DOI: 10.1007/s11595-024-2958-7
Advanced Materials

Effect of Fe2O3 on the Structure, Physical Properties and Crystallization of CaO-Al2O3-SiO2 Glass

Author information +
History +
PDF

Abstract

The calcium aluminosilicate-based glasses (CaO-Al2O3-SiO2, CAS) with different Fe2O3 content (0.10wt%, 0.50wt%, 0.90wt%, and 1.30wt%) were prepared by traditional melt-quenching method. The glass network structure, thermal and mechanical properties, and crystallization behavior changes were investigated by nuclear magnetic resonance spectrometer, Fourier-transform infrared spectro-photometer, X-ray diffractometer, differential scanning calorimetry and field emission scanning electron microscope measurements. The change of Qn in glass structures reveals the glass network connectivity decreases due to the increasing content of Fe2O3 addition, resulting in the increasing of non-bridging number in glass structure. The glass densities slightly rise from 2.644 to 2.681 g/cm3, while Vickers’s hardness increases at first, from 6.469 to 6.901 GPa, then slightly drops to 6.745 GPa, with Fe2O3 content increase. There is almost no thermal expansion coefficient change from different Fe2O3 content. The glass transmittance in visible range gradually decreases with higher Fe2O3 content, resulting from the strong absorption of Fe2+ and Fe3+ ions. The calculated activation energy from thermal analysis results first decreases from 282.70 to 231.18 kJ/mol, and then increases to 244.02 kJ/mol, with the Fe2O3 content increasing from 0.10wt% to 1.30wt%. Meanwhile, the maximum Avrami constant of 2.33 means the CAS glasses exhibit two-dimensional crystallization. All of the CAS glass-ceramics samples contain main crystal phase of anorthite, the microstructure appears lamellar and columnar crystals.

Keywords

calcium aluminosilicate glass / network structure / physical properties / crystallization

Cite this article

Download citation ▾
Feng Zhang, Dehua Xiong, Jun Xie, Jihong Zhang, Jianjun Han, Dequan Chen, Zhongquan Wen, Zhenhua Fan, Lina Chen, Tengfei Sun. Effect of Fe2O3 on the Structure, Physical Properties and Crystallization of CaO-Al2O3-SiO2 Glass. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(4): 954-961 DOI:10.1007/s11595-024-2958-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu J, Zhang M, Zhu C, et al. Preparation and Properties of Ferromagnetic Glass-ceramics and Glass Fibers in Alkali-free and High-iron Glass System[J]. Ceramics International, 2017, 43(5): 4295-4301.

[2]

Singh J, Kumar M, Kumar S, et al. Properties of Glass-Fiber Hybrid Composites: A Review[J]. Polymer-Plastics Technology and Engineering, 2016, 56(5): 455-469.

[3]

Sunil B, Likith TS, Nagaraj PB, et al. A Comparison Study on Mechanical Properties of E-glass Fiber and Areca Sheath Fiber Hybrid Composites[J]. Materials Today: Proceedings, 2022, 66(P4): 2521-2529.

[4]

Alizadeh P, Yekta BE, Gervei A. Effect of Fe2O3 Addition on the Sinterability and Machinability of Glass-ceramics in the System MgO-CaO-SiO2-P2O5[J]. Journal of the European Ceramic Society, 2004, 24(13): 3529-3533.

[5]

Wang ZJ, Ni W, Jia Y, et al. Crystallization Behavior of Glass Ceramics Prepared from the Mixture of Nickel Slag, Blast Furnace Slag and Quartz Sand[J]. Journal of Non-Crystalline Solids, 2010, 356(31–32): 1554-1558.

[6]

Pavić L, Moguš-Milanković A, Raghava Rao P, et al. Effect of Alkali-earth Modifier Ion on Electrical, Dielectric and Spectroscopic Properties of Fe2O3 Doped Na2SO4-MO-P2O5 Glass System[J]. Journal of Alloys and Compounds, 2014, 604: 352-362.

[7]

Wang SM, Kuang FH, Li J. Influence of Different Fe2O3 Content on Crystallization of MgO-Al2O3-SiO2-TiO2 System Glass-ceramics[J]. Phase Transitions, 2010, 83(6): 397-403.

[8]

Zhao M, Cao J, Wang Z, et al. Insight Into the Dual Effect of Fe2O3 Addition on the Crystallization of CaO-MgO-Al2O3-SiO2 Glass-ceramics[J]. Journal of Non-Crystalline Solids, 2019, 513: 144-151.

[9]

Huang Q, Liu T, Shen X, et al. Characterization of Fe2O3 Doping on Structure, Optical and Luminescence Properties of Magnesium Aluminosilicate-based Glasses[J]. Journal of Non-Crystalline Solids, 2021: 563

[10]

Ren XZ, Zhang W, Zhang Y, et al. Effects of Fe2O3 Content on Microstructure and Mechanical Properties of CaO-Al2O3-SiO2 System[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(1): 137-145.

[11]

Wang J, Li C, Liu W, et al. Improvement in Crystallization and Tensile Strength of 3Al2O3·B2O3·2SiO2 Ceramic Fibers by Fe3+ Addition[J]. Ceramics International, 2019, 45(18): 24288-24293.

[12]

Gu S, Wang Z, Jiang S, et al. Influences of Fe2O3 on the Structure and Properties of Bi2O3-B2O3-SiO2 Low-melting Glasses[J]. Ceramics International, 2014, 40(5): 7643-7645.

[13]

Park SY, Lee SK. High-resolution Solid-state NMR Study of the Effect of Composition on Network Connectivity and Structural Disorder in Multi-component Glasses in the Diopside and Jadeite Join: Implications for Structure of Andesitic Melts[J]. Geochimica et Cosmochimica Acta, 2014, 147: 26-42.

[14]

Jakobsen HJ, Skibsted J, Bildsøe H, et al. Magic-angle Spinning NMR Spectra of Satellite Transitions for Quadrupolar Nuclei in Solids[J]. Journal of Magnetic Resonance, 1989, 85(1): 173-180.

[15]

Mccloy J, Washton N, Gassman P, et al. Nepheline Crystallization in Boron-rich Alumino-silicate Glasses as Investigated by Multi-nuclear NMR, Raman, & Mössbauer Spectroscopies[J]. Journal of Non-Crystalline Solids, 2015, 409: 149-165.

[16]

Yilmaz G. Structural Characterization of Glass-ceramics Made from Fly Ash Containing SiO2-Al2O3-Fe2O3-CaO and Analysis by FT-IR-XRD-SEM Methods[J]. Journal of Molecular Structure, 2012, 1019: 37-42.

[17]

Yang Z, Wang C, Liu D, et al. A Quantitative Evaluation of Uranium Mobility and Potential Environment Risk in Coal Ash with SiO2-Al2O3-Fe2O3-CaO System[J]. J. Hazard Mater., 2020, 381: 120-977.

[18]

Li X, Zhi L, He C, et al. The Factors on Metallic Iron Crystallization from Slag of Direct Coal Liquefaction Residue SiO2-Al2O3-Fe2O3-CaO-MgO-TiO2-Na2O-K2O System in the Entrained Flow Gasification Condition[J]. Fuel, 2019, 246: 417-424.

[19]

Atalay S, Adiguzel HI, Atalay F. Infrared Absorption Study of Fe2O3-CaO-SiO2 Glass Ceramics[J]. Materials Science and Engineering: A, 2001, 304–306: 796-799.

[20]

Fayad AM, El-Kashef IM, Moustaffa FA. Infrared Absorption of Some Alkali Borate and Alkali Silicate Glasses Containing Nickel & Iron Oxides[J]. Silicon, 2015, 9(4): 555-561.

[21]

He X, Li C, Liu J, et al. Glass forming Ability, Structure and Properties of Cr2O3-Fe2O3 Co-doped MgO-Al2O3-SiO2-B2O3 Glasses and Glass-ceramics[J]. Journal of Non-Crystalline Solids, 2020: 529

[22]

Clayden NJ, Esposito S, Aronne A, et al. Solid State 27Al NMR and FTIR Study of Lanthanum Aluminosilicate Glasses[J]. Journal of Non-Crystalline Solids, 1999, 258(1): 11-19.

[23]

Cheng Y, Xiao H, Shuguang C, et al. Structure and Crystallization of B2O3-Al2O3-SiO2 Glasses[J]. Physica B: Condensed Matter, 2009, 404(8–11): 1230-1234.

[24]

Lin C, Liu J, Han L, et al. Study on the Structure, Thermal and Optical Properties in Cr2O3-incorporated MgO-Al2O3-SiO2-B2O3 Glass[J]. Journal of Non-Crystalline Solids, 2018, 500: 235-242.

[25]

Nagarjuna G, Venkatramaiah N, Satyanarayana PVV, et al. Fe2O3-induced Crystallization and the Physical Properties of Lead Arsenate Glass System[J]. Journal of Alloys and Compounds, 2009, 468(1–2): 466-472.

[26]

Darwish H, Gomaa MM. Effect of Compositional Changes on the Structure and Properties of Alkali-alumino Borosilicate Glasses[J]. Journal of Materials Science-Materials in Electronics, 2006, 17(1): 35-42.

[27]

Singh RK, Kothiyal GP, Srinivasan A. Influence of Iron Ions on the Magnetic Properties of CaO-SiO2-P2O5-Na2O-Fe2O3 Glass-ceramics[J]. Solid State Communications, 2008, 146(1–2): 25-29.

[28]

Carl R, Gerlach S, Rüssel C. The Effect of Composition on UV-vis-NIR Spectra of Iron Doped Glasses in the Systems Na2O/MgO/SiO2 and Na2O/MgO/Al2O3/SiO2[J]. Journal of Non-Crystalline Solids, 2007, 353(3): 244-249.

[29]

Blaine RL, Kissinger HE. Homer Kissinger and the Kissinger equation[J]. Thermochimica Acta, 2012, 540: 1-6.

[30]

Karamanov A, Pisciella P, Pelino M. The Crystallisation Kinetics of Iron Rich Glass in Different Atmospheres[J]. Journal of the European Ceramic Society, 2000, 20(12): 2233-2237.

[31]

Park YJ, Heo J. Nucleation and Crystallization Kinetics of Glass derived from Incinerator Fly Ash Waste[J]. Ceramics International, 2002, 28(6): 669-673.

[32]

Kemény T, Šesták J. Comparison of Crystallization Kinetics Determined by Isothermal and Non-isothermal Methods[J]. Thermochimica Acta, 1987, 110: 113-129.

[33]

Milićević B, Marinović-Cincović M, Dramićanin MD. Non-isothermal Crystallization Kinetics of Y2Ti2O7[J]. Powder Technology, 2017, 310: 67-73.

[34]

Matusita K, Sakka S, Matsui Y. Determination of the Activation Energy for Crystal Growth by Differential Thermal Analysis[J]. Journal of Materials Science, 1975, 10(6): 961-966.

[35]

Amista PA, Cesari MA, Montenero A, et al. Crystallization Behaviour in the System MgO-Al2O3-SiO2[J]. Journal of Non-Crystalline Solids, 1995, 192–193: 529-533.

[36]

Wang S. Effects of Fe on Crystallization and Properties of a New High Infrared Radiance Glass-Ceramics[J]. Environmental Science & Technology, 2010, 44(12): 4816-4820.

[37]

Zhang W, He F, Xiao Y, et al. Structure, Crystallization Mechanism, and Properties of Glass Ceramics from Molten Blast Furnace Slag with Different B2O3/Al2O3[J]. Materials Chemistry and Physics, 2020: 243

[38]

Yu W, Cao S, Wang J, et al. Crystallization Mechanisms of Cordierite Glass-ceramics with “surface-center” Crystallization Behavior[J]. Journal of the European Ceramic Society, 2021, 41(13): 6708-6721.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/