Temperature-controlled DCP Fluorescent Probe Based on Hydrogel-immobilized Quantum Dots Composite

Yilin Tong , Kun Yang , Xuecai Han , Kan Yu , Jiaqi Bao

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (4) : 931 -936.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (4) : 931 -936. DOI: 10.1007/s11595-024-2955-x
Advanced Materials

Temperature-controlled DCP Fluorescent Probe Based on Hydrogel-immobilized Quantum Dots Composite

Author information +
History +
PDF

Abstract

A composite was created by incorporating the quantum dot-enhanced SiO2 nanoparticles within this hydrogel. Based on this composite, a temperature-controlled fluorescent probe for DCP was developed. A meticulous examination of this probe revealed its attributes and factors affecting its performance. By using temperature modulation, the probe was adept at detecting DCP concentrations ranging between 1.0×10−6 and 9.0×10−6 mol/L. Such a probe offers remarkable selectivity, repeatability, and robust stability, so that the detection of DCP can be carried out at different temperatures, and a fast, reliable, sensitive and low-cost intelligent detection method is realized.

Keywords

temperature-controlled fluorescent probe / hydrogel-immobilized quantum dots composite / DCP

Cite this article

Download citation ▾
Yilin Tong, Kun Yang, Xuecai Han, Kan Yu, Jiaqi Bao. Temperature-controlled DCP Fluorescent Probe Based on Hydrogel-immobilized Quantum Dots Composite. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(4): 931-936 DOI:10.1007/s11595-024-2955-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agboola B, Ozoemena KI, Nyokong T. Hydrogen Peroxide Oxidation of 2-Chlorophenol and 2,4,5-trichlorophenol Catalyzed by Monomeric and Aggregated Cobalt Tetrasulfophthalocyanine[J]. J. Mol. Catal. A: Chem., 2005, 227(1–2): 209-216.

[2]

Iliev V, Mihaylova A, Bilyarska L. Photooxidation of Phenols in Aqueous Solution, Catalyzed by Mononuclear and Polynuclear Metal Phthalocyanine Compositeis[J]. J. Mol. Catal. A: Chem., 2002, 184: 121-130.

[3]

Li DP, Tong YL, Huang J, et al. First Observation of Tetranitro Iron(II) Phthalocyanine Catalyzed Oxidation of Phenolic Pollutant Assisted with 4-Aminoantipyrine Using Dioxygen as Oxidant[J]. J. Mol. Catal. A: Chem., 2011, 345: 108-116.

[4]

Mckinley R, Plant JA, Bell JNB, et al. Endocrine Disrupting Pesticides: Implications for Risk Assessment[J]. Environment International, 2008, 34(4): 168-172.

[5]

Mehmood Z, Kelly DE, Kelley SL. Cytochrome P450 3A4 Mediated Metabolism of 2,4-Dichlorophenol[J]. Chemosphere, 1997, 31(18): 2281-2291.

[6]

Niu JF, Xu JJ, Dai YR, et al. Immobilization of Horseradish Peroxidase by Electrospun Fibrous Films for Adsorption and Degradation of Pentachlorophenol in Water[J]. J. Hazard. Mater., 2013, 246: 119-125.

[7]

Zulkifli Syahidah N, Herlina AR, et al. Detection of Contaminants in Water Supply: A Review on State-of-the-art Monitoring Technologies and Their Applications[J]. Sensors and Actuators B: Chemical, 2018, 255: 2657-2689.

[8]

Wu L, Li A, Gao GD, et al. Efficient Photodegradation of 2,4-Dichlorophenolin Aqueous Solution Catalyzed by Polydivinylbenzene-supported Zinc Phthalocyanine[J]. J. Mol. Catal. A: Chem., 2007, 269: 183-189.

[9]

Tong YL, Zeng ZH, Yu K, et al. A composite Catalytic Oxidation-fluorescence Sensing System for 2,4-dichlorophenol Analysis Based on Fe(III)PcTs-BuOOH-CdTe QDs[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2021, 36(6): 896-902.

[10]

Huang CP, Li YK, Chen TM. A Highly Sensitive System for Urea Detection by Using CdSe/ZnS Core-shell Quantum Dots[J]. Biosensors and Bioelectronics, 2007, 22(8): 1835-1838.

[11]

Peng X, Schlamp MC, Alivisatos AP, et al. Epitaxial Growth of Highly Luminescent AdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility[J]. J. Am. Chem. Soc., 1997, 119(30): 7019-7029.

[12]

Qiu Y, Park K. Environment-sensitive Hydrogels for Drug Delivery[J]. Adv. Drug Deliver Rev., 2017, 53(3): 49-60.

[13]

Fundueanu G, Constantin M, Ascenzi P. Fast-responsive Porous Thermoresponsive Microspheres for Controlled Delivery of Macromolecules[J]. Int. J. Pharmaceut, 2010, 379(1): 9-17.

[14]

Wang B, Xu XD, Wang ZC, et al. Synthesis and Properties of pH and Temperature Sensitive P(NIPAAm-co-DMAEMA) Hydrogels[J]. Colloid Surface B, 2008, 64(1): 34-41.

[15]

Tokuyama H, Kanehara A. Novel Synthesis of Macroporous Poly(N-isopropylacrylamide) Hydrogels Using Oil-in-Water Emulsions[J]. Langmuir, 2014, 23(22): 11246-11251.

[16]

Satarkar NS, Hilt JZ. Hydrogel Nanocomposites as Remote-controlled Biomaterials[J]. Acta Biomater., 2007, 4(1): 11-6.

[17]

Zhang JT, Keller TF, Bhat R, et al. A novel Two-level Microstructured Poly(N-isopropylacrylamide) Hydrogel for Controlled Release[J]. Acta Biomater., 2010, 6(10): 3890-3898.

[18]

Zhang XZ, Zhuo RX. Dynamic Properties of Temperature-Sensitive Poly(N-isopropylacrylamide) Gel Cross-Linked through Siloxane Linkage[J]. Langmuir, 2000, 17(1): 12-6.

[19]

Koneswaran M, Narayanaswamy R. L-Cysteine-capped ZnS Quantum Dots based Fluorescence Sensor for Cu2+ Ion Sens[J]. Actuators B: Chem., 2009, 139: 104-109.

[20]

Koneswaran M, Narayanaswamy R. Mercaptoacetic Acid Capped CdS Quantum Dots as Fluorescence Single Shot Probe for Mercury (II)[J]. Sens. Actuators B: Chem., 2008, 139: 91-96.

[21]

Xia YS, Zhu CQ. Use of Surface-modified CdTe Quantum Dots as fluorescent Probes in Sensing Mercury (II)[J]. Talanta, 2008, 75: 215-221.

[22]

Stöber W, Fink A, Bohn E. Controlled Growth of Monodisperse Silica Spheres in Micron Size Range[J]. J. Colloid. Interf. Sci., 1968, 26: 62-69.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/