Probing the Nucleation and Growth Kinetics of Bismuth Nanoparticles via In-situ Transmission Electron Microscopy

Lang Wang , Chaofan Li , Maojin Ran , Manman Yuan , Zhiyi Hu , Yu Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (4) : 877 -887.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (4) : 877 -887. DOI: 10.1007/s11595-024-2949-8
Advanced Materials

Probing the Nucleation and Growth Kinetics of Bismuth Nanoparticles via In-situ Transmission Electron Microscopy

Author information +
History +
PDF

Abstract

The nucleation and growth mechanism of nanoparticles is an important theory, which can guide the preparation of nanomaterials. However, it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth. In this work, the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy (TEM) at atomic scale. The experimental results demonstrate that the size, stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles. Two non-classical growth paths including single crystal growth and polycrystalline combined growth, as well as, corresponding layer-by-layer growth mechanism along {012} stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly. These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.

Keywords

bismuth nanoparticles / crystal growth / transmission electron microscopy / in-situ electron microscopy

Cite this article

Download citation ▾
Lang Wang, Chaofan Li, Maojin Ran, Manman Yuan, Zhiyi Hu, Yu Li. Probing the Nucleation and Growth Kinetics of Bismuth Nanoparticles via In-situ Transmission Electron Microscopy. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(4): 877-887 DOI:10.1007/s11595-024-2949-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jacobson LC, Molinero V. Can Amorphous Nuclei Grow Crystalline Clathrates? The Size and Crystallinity of Critical Clathrate Nuclei[J]. J. Am. Chem. Soc., 2011, 133(16): 6458-6463.

[2]

Vekilov PG. Nucleation[J]. Cryst. Growth Des., 2010, 10(12): 5007-5019.

[3]

Wang H, Wang JT, Cao ZX, et al. A Surface Curvature Oscillation Model for Vapour-Liquid-Solid Growth of Periodic One-Dimensional Nanostructures[J]. Nat. Commun., 2015, 6(1): 6 412

[4]

Shpyrko OG, Streitel R, Balagurusamy VSK, et al. Surface Crystallization in a Liquid AuSi Alloy[J]. Science, 2006, 313(5783): 77-80.

[5]

Alsayed AM, Islam MF, Zhang J, et al. Premelting at Defects Within Bulk Colloidal Crystals[J]. Science, 2005, 309(5738): 1207-1210.

[6]

Erdemir D, Lee AY, Myerson AS. Nucleation of Crystals from Solution: Classical and Two-Step Models[J]. Accounts Chem. Res., 2009, 42(5): 621-629.

[7]

Vivares D, Kaler EW, Lenhoff A M. Quantitative Imaging by Confocal Scanning Fluorescence Microscopy of Protein Crystallization via Liquid-Liquid Phase Separation[J]. Acta Crystallogr D Biol. Crystallogr., 2005, 61: 819-825. Pt 6

[8]

Samanta A, Tuckerman ME, Yu T Q, et al. Microscopic Mechanisms of Equilibrium Melting of A Solid[J]. Science, 2014, 346(6210): 729-732.

[9]

Burakovsky L, Preston DL, Silbar RR. Melting as A Dislocation-Mediated Phase Transition[J]. Phys. Rev. B, 2000, 61(22): 15011-15018.

[10]

Cahn RW. Materials Science: Melting and the Surface[J]. Nature, 1986, 323(6090): 668-669.

[11]

Peng Y, Wang F, Wang Z, et al. Two-Step Nucleation Mechanism in Solid-Solid Phase Transitions[J]. Nat. Mater., 2015, 14(1): 101-108.

[12]

Chung SY, Kim YM, Kim JG, et al. Multiphase Transformation and Ostwald’s Rule of Stages during Crystallization of A Metal Phosphate[J]. Nat. Phys., 2008, 5(1): 68-73.

[13]

Nielsen MH, Aloni S, De Yoreo JJ. In situ TEM Imaging of CaCO3 Nucleation Reveals Coexistence of Direct and Indirect Pathways[J]. Science, 2014, 345(6201): 1158-1162.

[14]

Gebauer D, Völkel A, Cölfen H. Stable Prenucleation Calcium Carbonate Clusters[J]. Science, 2008, 322(5909): 1819-1822.

[15]

Li J, Johnson G, Zhang S, et al. In situ Transmission Electron Microscopy for Energy Applications[J]. Joule, 2019, 3(1): 4-8.

[16]

Wu R, Drozdov IK, Eltinge S, et al. Large-Area Single-Crystal Sheets of Borophene on Cu(111) Surfaces[J]. Nat. Nanotechnol., 2019, 14(1): 44-49.

[17]

Just J, Coughlan C, Singh S, et al. Insights into Nucleation and Growth of Colloidal Quaternary Nanocrystals by Multimodal X-ray Analysis[J]. ACS Nano, 2021, 15(4): 6439-6447.

[18]

Kidambi PR, Bayer BC, Blume R, et al. Observing Graphene Grow: Catalyst-Graphene Interactions During Scalable Graphene Growth on Polycrystalline Copper[J]. Nano Lett., 2013, 13(10): 4769-4778.

[19]

Lupulescu AI, Rimer JD. In situ Imaging of Silicalite-1 Surface Growth Reveals the Mechanism of Crystallization[J]. Science, 2014, 344(6185): 729-732.

[20]

Zhang H, Rivest JB, Miller TA, et al. Observation of Transient Structural-Transformation Dynamics in A Cu2S Nanorod[J]. Science, 2011, 333(6039): 206-209.

[21]

Zhang Z, Liu N, Li L, et al. In situ TEM Observation of Crystal Structure Transformation in InAs Nanowires on Atomic Scale[J]. Nano Lett., 2018, 18(10): 6597-6603.

[22]

He K, Sawczyk M, Liu C, et al. Revealing Nanoscale Mineralization Pathways of Hydroxyapatite Using in situ Liquid Cell Transmission Electron Microscopy[J]. Adv. Sci., 2020, 6(47): eaaz7524

[23]

Olson EA, Efremov MY, Zhang M, et al. Size-Dependent Melting of Bi Nanoparticles[J]. J. Appl. Phys., 2005, 97(3): 034 304

[24]

Wu S, Jiang Y, Hu L, et al. Size-Dependent Crystalline Fluctuation and Growth Mechanism of Bismuth Nanoparticles under Electron Beam Irradiation[J]. Nanoscale, 2016, 8(24): 12282-12288.

[25]

Li Y, Bunes BR, Zang L, et al. Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet[J]. ACS Nano, 2016, 10(2): 2386-2391.

[26]

Niu KY, Liao HG, Zheng H. Visualization of the Coalescence of Bismuth Nanoparticles[J]. Microsc. Microanal., 2014, 20(2): 416-424.

[27]

Li Y, Zang L, Jacobs DL, et al. In situ Study on Atomic Mechanism of Melting and Freezing of Single Bismuth Nanoparticles[J]. Nat. Commun., 2017, 8(1): 14 462

[28]

Li J, Chen J, Wang H, et al. In situ Atomic-Scale Study of Particle-Mediated Nucleation and Growth in Amorphous Bismuth to Nanocrystal Phase Transformation[J]. Adv. Sci., 2018, 5(6): 1 700 992

[29]

Xu J, Bian Z, Xin X, et al. Size Dependence of Nanosheet BiVO4 with Oxygen Vacancies and Exposed {0 0 1} Facets on the Photodegradation of Oxytetracycline[J]. Chem. Eng. J., 2018, 337: 684-696.

[30]

Vitos L, Ruban AV, Skriver HL, et al. The Surface Energy of Metals[J]. Surf. Sci., 1998, 411(1): 186-202.

[31]

Wang ZL. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies[J]. J. Phys. Chem. B, 2000, 104(6): 1153-1175.

[32]

Jankowski M, Kamiński D, Mirolo M, et al. Controlling the Growth of Bi(110) and Bi(111) Films on An Insulating Substrate[J]. Nanotechnology, 2017, 28(15): 155 602

[33]

Barnard AS, Lin XM, Curtiss LA. Equilibrium Morphology of Face-Centered Cubic Gold Nanoparticles - 3 nm and the Shape Changes Induced by Temperature[J]. J. Phys. Chem. B, 2005, 109(51): 24465-24472.

[34]

Barmparis GD, Lodziana Z, Lopez N, et al. Nanoparticle Shapes by Using Wulff Constructions and First-Principles Calculations[J]. Beilstein J. Nanotechnol., 2015, 6: 361-368.

[35]

Stankic S, Cortes-Huerto R, Crivat N, et al. Equilibrium Shapes of Supported Silver Clusters[J]. Nanoscale, 2013, 5(6): 2 448

[36]

Hÿtch MJ, Snoeck E, Kilaas R. Quantitative Measurement of Displacement and Strain Fields from HREM Micrographs[J]. Ultramicroscopy, 1998, 74(3): 131-146.

[37]

Li J, Wang Z, Li Y, et al. In situ Atomic-Scale Observation of Kinetic Pathways of Sublimation in Silver Nanoparticles[J]. Adv. Sci., 2019, 6(8): 1 802 131

AI Summary AI Mindmap
PDF

202

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/