Etching Mechanism of Ti3C2Cl2 MXene Phases by CuCl2-Lewis Molten Salt Method

Ming Yan , Yu Zhu , Jiangtao Huang , Haoyu Chen , Yuxiao Deng , Yanlin Chen , Juan Wang , Jan-Michael Albina

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (4) : 863 -868.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (4) : 863 -868. DOI: 10.1007/s11595-024-2947-x
Advanced Materials

Etching Mechanism of Ti3C2Cl2 MXene Phases by CuCl2-Lewis Molten Salt Method

Author information +
History +
PDF

Abstract

We described a method for obtaining fluorine-free Ti3C2Cl2 MXene phases by melting copper in CuCl2 instead of aluminum in Ti3AlC2. XRD results show that when molten salt CuCl2 etches Ti3AlC2, it forms an intermediate product Ti3CuC2, and then reacts with Ti3CuC2 to obtain Ti3C2Cl2. The reaction of Ti3AlC2 and CuCl2 at a temperature of 800 °C for 2 h to obtain Ti3C2Cl2 with an optimal lamellar structure is shown in SEM results. The pseudopotential plane-wave (PP-PW) method is used to calculate on the electronic structure. The etching mechanism is investigated by the total energies of each substance. The chemical reaction of Ti3AlC2 and CuCl2 will first become Ti3CuC2 and Cu, and then become Ti3C2Cl2 during the Lewis acid etching process, which are consistent with the experimental results.

Keywords

molten salt method / CuCl2 / MXene / first-principles calculations / etching mechanism

Cite this article

Download citation ▾
Ming Yan, Yu Zhu, Jiangtao Huang, Haoyu Chen, Yuxiao Deng, Yanlin Chen, Juan Wang, Jan-Michael Albina. Etching Mechanism of Ti3C2Cl2 MXene Phases by CuCl2-Lewis Molten Salt Method. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(4): 863-868 DOI:10.1007/s11595-024-2947-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shahzad F, Alhabeb M, Hatter CB, et al. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140.

[2]

Ran J, Gao G, Li FT, et al. T3C2 MXene Co-catalyst on Metal Sulfide Photo-absorbers for Enhanced Visible-light Photocatalytic Hydrogen Production[J]. Nature Communications, 2017, 8(1): 13 907

[3]

Persson I, Halim J, Lind H, et al. 2D Transition Metal Carbides (MXenes) for Carbon Capture[J]. Advanced Materials, 2019, 31(2): 1 805 472

[4]

Kim SJ, Koh HJ, Ren CE, et al. Metallic T3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio[J]. ACS Nano, 2018, 12(2): 986-993.

[5]

Cao H, Escamilla M, Arole KD, et al. Flocculation of MXenes and Their Use as 2D Particle Surfactants for Capsule Formation[J]. Langmuir, 2021, 37(8): 2649-2657.

[6]

Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253.

[7]

Naguib M, Mochalin VN, Barsoum MW, et al. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials[J]. Advanced Materials, 2014, 26(7): 992-1005.

[8]

Naguib M, Mashtalir O, Carle J, et al. Two-dimensional Transition Metal Carbides[J]. ACS Nano, 2012, 6(2): 1322-1331.

[9]

Halim J, Lukatskaya MR, Cook KM, et al. Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films[J]. Chemistry of Materials, 2014, 26(7): 2374-2381.

[10]

Feng A, Yu Y, Jiang F, et al. Fabrication and Thermal Stability of NH4HF2-etched Ti3C2 MXene[J]. Ceramics International, 2017, 43(8): 6322-6328.

[11]

Natu V, Pai R, Sokol M, et al. 2D Ti3C2Tz MXene Synthesized by Water-free Etching of Ti3AlC2 in Polar Organic Solvents[J]. Chem., 2020, 6(3): 616-630.

[12]

Wang L, Zhang H, Wang B, et al. Synthesis and Electrochemical Performance of Ti3C2Tx with Hydrothermal Process[J]. Electronic Materials Letters, 2016, 12(5): 702-710.

[13]

Wu J, Wang Y, Zhang Y, et al. Highly Safe and Ionothermal Synthesis of Ti3C2 MXene with Expanded Interlayer Spacing for Enhanced Lithium Storage[J]. Journal of Energy Chemistry, 2020, 47: 203-209.

[14]

Ghidiu M, Lukatskaya MR, Zhao MQ, et al. Conductive Two-dimensional Titanium Carbide ‘clay’ with High Volumetric Capacitance[J]. Nature, 2014, 516(7529): 78-81.

[15]

Urbankowski P, Anasori B, Makaryan T, et al. Synthesis of Two-dimensional Titanium Nitride (MXene)[J]. Nanoscale, 2016, 8(22): 11385-11391.

[16]

Zong H, Qi R, Yu K, et al. Ultrathin Ti2NTx MXene-wrapped MOF-derived CoP Frameworks Towards Hydrogen Evolution and Water Oxidation[J]. ElectrochimicaActa, 2021, 393: 139 068.

[17]

Fashandi H, Dahlqvist M, Lu J, et al. Synthesis of Ti2AuC2, Ti3Au2C2 and Ti3IrC2 by Noble Metal Substitution Reaction in Ti3SiC2 for High-temperature-stable Ohmic Contacts to SiC[J]. Nature Materials, 2017, 16(8): 814-818.

[18]

Fashandi H, Lai CC, Dahlqvist M, et al. Ti3AuC and Ti3A%C2 Formed by Solid State Reaction of Gold with Ti2AlC and Ti3AlC2[J]. Chemical Communications, 2017, 53(69): 9554-9557.

[19]

Wang S, Cheng J, Zhu S, et al. A Novel Route to Prepare a Ti3SnC2/A2O3 Composite[J]. Scripta Materialia, 2017, 131: 80-83.

[20]

Li T, Yao L, Liu Q, et al. Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment[J]. Angewandte Chemie International Edition, 2018, 57(21): 6115-6119.

[21]

Li M, Lu J, Luo K, et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737.

[22]

Li Y, Shao H, Lin Z, et al. A General Lewis Acidic Etching Route for Preparing MXenes with Enhanced Electrochemical Performance in Non-aqueous Electrolyte[J]. Nature Materials, 2020, 19(8): 894-899.

[23]

Ma G, Shao H, Xu J, et al. Li-ion Storage Properties of Two-dimensional Titanium-carbide S ynthesized via Fast One-pot Method in Air Atmosphere[J]. Nature Communications, 2021, 12(1): 5085-5090.

[24]

Misiewicz J. Inter-band Transitions in Zn3P2[J]. Journal of Physics: Condensed Matter, 1990, 2(8): 2053-2066.

[25]

Kresse G, Furthmüller J. Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set[J]. Computational Materials Science, 1996, 6(1): 15-50.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/