Hot Compressive Deformation Characteristics of Al-9.3Zn-2.4Mg-1.1Cu Alloy

Pengru Liu , Shiming Hao , Jingpei Xie

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 754 -765.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 754 -765. DOI: 10.1007/s11595-024-2934-2
Metallic Materials

Hot Compressive Deformation Characteristics of Al-9.3Zn-2.4Mg-1.1Cu Alloy

Author information +
History +
PDF

Abstract

To understand the hot compression deformation characteristics of the self-developed Al-9.3Zn-2.4Mg-1.1Cu alloy, the hot compression tests of Al-9.3Zn-2.4Mg-1.1Cu alloy were investigated by Gleeble 1500 thermo-mechanical simulator to determine the best hot processing conditions. The hot deformation temperatures were 300, 350, 400, and 450 °C, and the strain rates were 1, 0.1, 0.01, and 0.003 s−1, respectively. Based on the experimental results, the constitutive equation and hot processing maps are established, and the corresponding strain rate and temperature-sensitive index are analyzed. The results show that Al-9.3Zn-2.4Mg-1.1Cu alloy has a dynamic softening trend and high strain rate sensitivity during the isothermal compression process. The hot deformation behavior can be described by an Arrhenius-type equation after strain compensation. The temperature has a negligible effect on the hot processing properties, while a low strain rate is favorable for the hot working of alloy. The processing maps and microstructure show that the optimal processing conditions were in the temperature range of 400–450 °C and strain rate range of 0.003–0.005 s−1.

Keywords

Al-Zn-Mg-Cu alloy / hot working / hot deformation behavior / constitutive equations / processing maps

Cite this article

Download citation ▾
Pengru Liu, Shiming Hao, Jingpei Xie. Hot Compressive Deformation Characteristics of Al-9.3Zn-2.4Mg-1.1Cu Alloy. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(3): 754-765 DOI:10.1007/s11595-024-2934-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang L, Wang C, Fu H, et al. Discovery of Aluminum Alloys with Ultra-Strength and High-Toughness Via a Property-Oriented Design Strategy[J]. J. Mater. Sci. Technol., 2022, 98: 33-43.

[2]

Zhang X, Chen Y, Hu J. Recent Advances in the Development of Aerospace Materials[J]. Prog. Aerosp. Sci., 2018, 97(2): 22-34.

[3]

Dai Y, Yan L, Hao J. Review on Micro-Alloying and Preparation Method of 7xxx Series Aluminum Alloys: Progresses and Prospects[J]. Mater., 2022, 15(3): 1 216

[4]

Williams J C, Starke E A Jr. Progress in Structural Materials for Aerospace Systems[J]. Acta Mater., 2003, 51(19): 5 775-5 799.

[5]

Miao J, Sutton S, Luo A A. Deformation Microstructure and Thermomechanical Processing Maps of Homogenized AA2070 Aluminum Alloy[J]. Mater. Sci. Eng. A, 2022, 834: 142 619.

[6]

Shi G H, Zhang Y A, Li X W, et al. Dynamic Recrystallization Behavior of 7056 Aluminum Alloys during Hot Deformation[J]. J. Wuhan Univ. Technol. -Mat. SCi. Ed., 2022, 37(1): 90-95.

[7]

Guo L, Yang S, Yang H, et al. Processing Map of As-Cast 7075 Aluminum Alloy for Hot Working[J]. Chin. J. Aeronaut., 2015, 28(6): 1 774-1 783.

[8]

Park S Y, Kim W J. Difference in the Hot Compressive Behavior and Processing Maps between the As-Cast and Homogenized Al-Zn-Mg-Cu (7075) Alloys[J]. J. Mater. Sci. Technol., 2016, 32(7): 660-670.

[9]

Zhou P, Song Y, Hua L, et al. Mechanical Behavior and Deformation Mechanism of 7075 Aluminum Alloy under Solution Induced Dynamic Strain Aging[J]. Mater. Sci. Eng. A, 2019, 759(24): 498-505.

[10]

Zang Q, Yu H, Lee Y S, et al. Effects of Initial Microstructure on Hot Deformation Behavior of Al-7.9Zn-2.7Mg-2.0Cu (wt%) Alloy[J]. Mater. Charact., 2019, 151: 404-413.

[11]

Tang J, Wang J, Teng J, et al. Effect of Zn Content on the Dynamic Softening of Al–Zn–Mg–Cu Alloys during Hot Compression Deformation[J]. Vac., 2021, 184: 109-941.

[12]

Zhang T, Wu Y, Gong H, et al. Flow Stress Behaviour and Constitutive Model of 7055 Aluminium Alloy during Hot Plastic Deformation[J]. Mech., 2016, 22(5): 359-369.

[13]

Yang Y, Zhang Z, Li X, et al. The Effects of Grain Size on the Hot Deformation and Processing Map for 7075 Aluminum Alloy[J]. Mater. Des., 2013, 51(10): 592-597.

[14]

Sun Y, Bao L, Duan Y. Hot Compressive Deformation Behaviour and Constitutive Equations of Mg-Pb-Al-1B-0.4Sc Alloy[J]. Philos. Mag., 2021, 101(22): 2 355-2 376.

[15]

Bao W, Bao L, Liu D, et al. Constitutive Equations, Processing Maps, and Microstructures of Pb-Mg-Al-B-0.4Y Alloy under Hot Compression[J]. J. Mater. Eng. Perform., 2020, 29(1): 607-619.

[16]

Duan Y, Ma L, Qi H, et al. Developed Constitutive Models, Processing Maps and Microstructural Evolution of Pb-Mg-10Al-0.5B Alloy[J]. Mater. Charact., 2017, 129: 353-366.

[17]

Li R Y, Duan Y H, Ma L S, et al. Flow Behavior, Dynamic Recrystallization and Processing Map of Mg-20Pb-1.6Al-0.4B Alloy[J]. J. Mater. Eng. Perform., 2017, 26(5): 2 439-2 451.

[18]

Qian X M, Parson N, Chen X G. Effects of Mn Addition and Related Mn-Containing Dispersoids on the Hot Deformation Behavior of 6082 Aluminum Alloys[J]. Mater. Sci. Eng. A, 2019, 764: 138 253.

[19]

Liao F, Fan S, Deng Y, et al. First-Principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys[J]. J. Aeronaut. Mater., 2016, 36(6): 1-8.

[20]

Zhi S, Li X, Yuan J, et al. Analysis of Hot Deformation Behavior and Processing Map of Extruded AZ40 Alloy[J]. J. Mater Eng., 2021, 49(11): 136-146.

[21]

Chen Z, Lin Y C, He D, et al. A Unified Dislocation Density-Based Model for an Aged Polycrystalline Ni-Based Superalloy Considering the Coupled Effects of Complicate Deformation Mechanisms and Initial δ Phase[J]. Mater. Sci. Eng. A, 2021, 827: 142 062.

[22]

Motallebi R, Savaedi Z, Mirzadeh H. Additive Manufacturing-A Review of Hot Deformation Behavior and Constitutive Modeling of Flow Stress[J]. Curr. Opin. Solid. St. M, 2022, 26(3): 100 992

[23]

Wang D, Zhu Q, Wei Z, et al. Hot Deformation Behaviors of AZ91 Magnesium Alloy: Constitutive Equation, ANN-Based Prediction, Processing Map and Microstructure Evolution[J]. J. Alloys Compd., 2022(908): 164 580

[24]

Xu C, Huang J, Jiang F, et al. Dynamic Recrystallization and Precipitation Behavior of a Novel Sc, Zr Alloyed Al-Zn-Mg-Cu Alloy during Hot Deformation[J]. Mater. Charact., 2022(183): 111 629

[25]

Luo R, Cao Y, Qiu Y, et al. Investigation of Constitutive Model of As-Extruded Spray-Forming 7055 Aluminum Alloy Based on BP Artificial Neural Network[J]. J. Aeronaut. Mater., 2021, 41(1): 35-44.

[26]

Prasad Y, Gegel H L, Doraivelu S M, et al. Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242[J]. Metall. Trans. A, 1984, 15: 1 883-1 892.

[27]

Prasad Y. Recent Advances in the Science of Mechanical Processing[J]. Indian J. Technol., 1990, 28(6–8): 435-451.

[28]

Zhou L, Li M, Wang Q, et al. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. Acta Metall. Sin., 2020, 56(8): 1 155-1 164.

AI Summary AI Mindmap
PDF

189

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/