Effect of Plastic Deformation on Microstructure and Properties of Cu-(1 wt%–6 wt%) Ag Alloy

Yadong Ru , Zhongyuan Zhang , Zhaoshun Gao , Ling Zhang , Tingting Zuo , Jiangli Xue , Zhixiang Tang , Bo Da , Yongsheng Liu , Liye Xiao

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 747 -753.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 747 -753. DOI: 10.1007/s11595-024-2933-3
Metallic Materials

Effect of Plastic Deformation on Microstructure and Properties of Cu-(1 wt%–6 wt%) Ag Alloy

Author information +
History +
PDF

Abstract

In the present study, the Cu-(1 wt%–6 wt%) Ag alloys were prepared by melting, forging and wire drawing. The effects of plastic deformation on microstructure evolution and properties of the alloys were investigated. The results show that non-equilibrium eutectic colonies exist in the Cu- (3 wt%–6 wt%) Ag alloy and no eutectic colonies in the 1 wt%–2 wt% Ag containing alloys. These eutectic colonies are aligned along the drawing direction and refined with the increase of draw ratio. Attributed to the refinement of eutectic colonies, the Cu-Ag alloy exhibits higher strength with the increase of draw ratio. The Cu-6Ag alloy exhibits excellent comprehensive properties with a strength of 930 MPa and a conductivity of 82 %IACS when the draw ratio reaches 5.7.

Keywords

Cu-Ag alloy / high strength and high conductivity / microstructure / eutectic structure / strengthening mechanism

Cite this article

Download citation ▾
Yadong Ru, Zhongyuan Zhang, Zhaoshun Gao, Ling Zhang, Tingting Zuo, Jiangli Xue, Zhixiang Tang, Bo Da, Yongsheng Liu, Liye Xiao. Effect of Plastic Deformation on Microstructure and Properties of Cu-(1 wt%–6 wt%) Ag Alloy. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(3): 747-753 DOI:10.1007/s11595-024-2933-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schneider-Muntau H J. Pulsed Monocoil Magnets for Highest Fields[J]. Current Applied Physics, 2006, 6(1): 54-58.

[2]

Spencer K, Lecouturier F, Thilly L. Established and Emerging Materials for Use as High-field Magnet Conductors[J]. Advanced Engineering Materials, 2010, 6(5): 290-297.

[3]

Sakai Y, Inoue K, Maeda H J. New High-strength, High-conductivity Cu-Ag Alloy Sheets[J]. Acta Metallurgica et Materialia, 1995, 43(4): 1 517-1 522.

[4]

Freudenberger J, Grünberger W, Botcharova E, et al. Mechanical Properties of Cu-based Micro and Macrocomposites[J]. Advanced Engineering Materials, 2010, 4(9): 677-681.

[5]

Sakai Y, Inoue K, Asano T, et al. Development of High Strength, High Conductivity Cu-Ag Alloys for High-field Pulsed Magnet Use[J]. Applied Physics Letters, 1991, 59(23): 2 965-2 967.

[6]

Xie M, Huang W, Chen H, et al. Microstructural Evolution and Strengthening Mechanisms in Cold-rolled Cu-Ag Alloys[J]. Journal of Alloys and Compounds, 2021, 851: 156 893.

[7]

Tian Y, Li J, Zhang P, et al. Microstructures, Strengthening Mechanisms and Fracture Behavior of Cu-Ag Alloys Processed by High-pressure Torsion[J]. Acta Materialia, 2012, 60(1): 269-281.

[8]

Liu J B, Meng L, Zeng Y W. Microstructure Evolution and Properties of Cu-Ag Microcomposites with Different Ag Content[J]. Materials Science and Engineering: A, 2006, 435: 237-244.

[9]

Benghalem A, Morris D G. Microstructure and Strength of Wire-drawn Cu-Ag Filamentary Composites[J]. Acta Materialia, 1997, 45(1): 397-406.

[10]

Hong S, Hill M. Microstructural Stability and Mechanical Response of Cu-Ag Microcomposite Wires[J]. Acta Materialia, 1998, 46(12): 4 111-4 122.

[11]

Zhang L, Meng L. Evolution of Microstructure and Electrical Resistivity of Cu-12 wt%Ag Filamentary Microcomposite with Drawing Deformation[J]. Scripta Materialia, 2005, 52(12): 1 187-1 191.

[12]

Hong S I, Hill M A. Mechanical Stability and Electrical Conductivity of Cu-Ag Filamentary Microcomposites[J]. Materials Science and Engineering: A, 1999, 264(1–2): 151-158.

[13]

Sakai Y, Schneider-Muntau H J. Ultra-high Strength, High Conductivity Cu-Ag Alloy Wires[J]. Acta Materialia, 1997, 45(3): 1 017-1 023.

[14]

Ko Y G, Namgung S, Lee B U, et al. Mechanical and Electrical Responses of Nanostructured Cu-3 wt%Ag Alloy Fabricated by ECAP and Cold Rolling[J]. Journal of Alloys and Compounds, 2010, 504: S448-S451.

[15]

Zhu X, Xiao Z, An J, et al. Microstructure and Properties of Cu-Ag Alloy Prepared by Continuously Directional Solidification[J]. Journal of Alloys and Compounds, 2021, 883: 160 769.

[16]

Zhang B B, Tao N R, Lu K. A High Strength and High Electrical Conductivity Bulk Cu-Ag Alloy Strengthened with Nanotwins[J]. Scripta Materialia, 2017, 129: 39-43.

[17]

Bao G, Xu Y, Huang L, et al. Strengthening Effect of Ag Precipitates in Cu-Ag Alloys: A Quantitative Approach[J]. Materials Research Letters, 2016, 4(1): 37-42.

[18]

Sitarama Raju K, Subramanya Sarma V, Kauffmann A, et al. High Strength and Ductile Ultrafine-grained Cu-Ag Alloy Through Bimodal Grain Size, Dislocation Density and Solute Distribution[J]. Acta Materialia, 2013, 61(1): 228-238.

[19]

Lin J, Meng L. Effect of Aging Treatment on Microstructure and Mechanical Properties of Cu-Ag Alloys[J]. Journal of Alloys and Compounds, 2008, 454(1–2): 150-155.

[20]

Liu J B, Zhang L, Yao D W, et al. Microstructure Evolution of Cu/Ag Interface in the Cu-6 wt% Ag Filamentary Nanocomposite[J]. Acta Materialia, 2011, 59(3): 1 191-1 197.

[21]

Massalski T. Binary Alloy Phase Diagrams Materials Park Vol. 3, 2nd, 1990 Ohio: ASM-international. [M]

[22]

Lee K H, Hong S I. Interfacial and Twin Boundary Structures of Nanostructured Cu-Ag Filamentary Composites[J]. Journal of Materials Research, 2003, 18(9): 2 194-2 202.

[23]

Liu J B, Zhang L, Zeng Y W, et al. Co-deformation in Cu-6 wt% Ag Nanocomposites[J]. Scripta Materialia, 2011, 64(7): 665-668.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/