Microstructure Characteristics and Elevated Temperature Mechanical Properties of a B Contained β-solidified γ-TiAl Alloy

Xiuqi Wang , Ruiqi Guo , Guohuai Liu , Tianrui Li , Yuxuan Yang , Yang Chen , Meiling Xin , Zhaodong Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 738 -746.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 738 -746. DOI: 10.1007/s11595-024-2932-4
Metallic Materials

Microstructure Characteristics and Elevated Temperature Mechanical Properties of a B Contained β-solidified γ-TiAl Alloy

Author information +
History +
PDF

Abstract

The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo, V, B) alloys were obtained by vacuum arc re-melting (VAR) and primary annealing heat treatment (HT) of 1 260 °C/6 h/Furnace cooling (FC). The phase transformation, microstructure evolution and tensile properties for as-cast and HTed alloys were investigated. Results indicate that three main phase transformation points are determined, T eut=1 164.3 °C, T γ solv = 1 268.3 °C and T β trans = 1 382.8 °C. There are coarse lamellar colonies (300 µm in length) and neighbor reticular B2 and γ grain (3–5 µm) in as-cast alloy, while lamellar colonies are markedly refined and multi-oriented (20–50 µm) as well as the volume fraction and grain sizes of equiaxed γ and B2 phases (about 15 µm) significantly increase in as-HTed alloy. Phase transformations involving α+γ→α+γ+β/B2 and discontinuous γ coarsening contribute to the above characteristics. Borides (1–3 µm) act as nucleation sites for β eutectic and produce massive β grains with different orientations, thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure. Tensile curves show both the alloys exhibit suitable performance at 800 °C. As-cast alloy shows a higher ultimate tensile stress of 647 MPa, while a better total elongation of more than 41% is obtained for as-HTed alloy. The mechanical properties improvement is mainly attributed to fine, multi-oriented lamellar colonies, coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation.

Keywords

TiAl alloy / phase transformation / heat treatment / boride / microstructure / mechanical properties

Cite this article

Download citation ▾
Xiuqi Wang, Ruiqi Guo, Guohuai Liu, Tianrui Li, Yuxuan Yang, Yang Chen, Meiling Xin, Zhaodong Wang. Microstructure Characteristics and Elevated Temperature Mechanical Properties of a B Contained β-solidified γ-TiAl Alloy. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(3): 738-746 DOI:10.1007/s11595-024-2932-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Appel F, Clemens H, Fischer F D. Modeling Concepts for Intermetallic Titanium Aluminides[J]. Prog. Mater. Sci., 2016, 81: 55-124.

[2]

Duan B H, Yang Y C, He S Y, et al. History and Development of γ-TiA Alloys and the Effect of Alloying Elements on Their Phase Transformations[J]. J. Alloys Compd., 2022, 909: 164 811.

[3]

Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications, 2003 Weinheim: Wiley-VCH. M]

[4]

Clemens H, Mayer S. Microstructure, Properties and Applications of Advanced Intermetallic TiAl Alloys[J]. Adv. Eng. Mater., 2013, 15: 191-215.

[5]

Chen G, Peng Y, Zheng G, et al. Polysynthetic Twinned TiAl Single Crystals for High-temperature Applications[J]. Nat. Mater., 2016, 15: 876-881.

[6]

Liu B, Li J, Hu D. Solidification and Grain Refinement in Ti(48–50) Al2Mn2Nb1B Alloys[J]. Intermetallics, 2018, 101: 99-107.

[7]

Bewlay B P, Nag S, Suzuki A, et al. TiAl Alloys in Commercial Aircraft Engines[J]. Mater. High Temp., 2016, 33: 549-559.

[8]

Zhang D D, Bao L Y, Li Q, et al. Microstructure Evolution and Properties of Powder Metallurgy Ti43Al9V0.3Y Alloy Sheets at Different Rolling Temperatures[J]. Mater. Sci. Eng. A, 2023, 866: 144 685.

[9]

Zheng G M, Tang B, Zhao S K, et al. Breaking the High-temperature Strength-ductility Trade-off in TiAl Alloys Through Microstructural Optimization[J]. Int. J. Plast., 2023, 170: 103 756.

[10]

Ding J, Zhang M H, Liang Y F, et al. Enhanced High-temperature Tensile Property by Gradient Twin Structure of Duplex High-Nb-containing TiAl Alloy[J]. Acta Mater., 2018, 161: 1-11.

[11]

Liu G H, Li X Z, Su Y Q, et al. Microstructure, Microsegregation Pattern and The Formation of B2 Phase in Directionally Solidified Ti-46Al-8Nb Alloy[J]. J. Alloy Compd., 2012, 541: 275-282.

[12]

Yang K, Yang Z J, Deng P, et al. Microstructure and Mechanical Properties of As-cast-TiAl Alloys with Different Cooling Rates[J]. J. Mater. Eng. Perform., 2019, 28: 1-10.

[13]

Tang B, Wang W Y, Xiang L, et al. Metadynamic Recrystallization Behavior of β-solidified TiAl Alloy During Post-annealing after Hot Deformation[J]. Intermetallics, 2020, 117: 106 679.

[14]

Yue H, Peng H, Li R, et al. Effect of Heat Treatment on the Microstructure and Anisotropy of Tensile Properties of TiAl Alloy Produced via Selective Electron Beam Melting[J]. Mater. Sci. Eng. A, 2021, 803: 140 473.

[15]

Xu X, Ding H, Huang H. Microstructure and Elevated Temperature Tensile Property of Ti-46Al-7Nb-(W,Cr,B) Alloy Compared with Binary and Ternary TiAl Alloy[J]. Mater. Sci. Eng. A, 2021, 807: 140 902.

[16]

Oehring M, Stark A, Paul J D H, et al. Microstructural Refinement of Boron-containing β-solidifying γ-titanium Aluminide Alloys through Heat Treatments in the β Phase Field[J]. Intermetallics, 2013, 32: 12-20.

[17]

Li M A, Li J, Zhou T, et al. Microstructure Evolution, Deformation Behavior and Manufacture Design of TiAl Matrix Composites Reinforced with In-situ Borides Precipitation[J]. T. Nonferr. Metal Soc., 2023, 33: 107-127.

[18]

Schwaighofer E, Schloffer M, Schmoelzer T, et al. Influence of Heat Treatments on the Microstructure of A Multi-phase Titanium Aluminide Alloy[J]. Practical Metallography, 2012, 49: 124-137.

[19]

Cheng L, Zhang S, Yang G, et al. Tailoring Microstructure and Mechanical Performance of A β-solidifying TiAl Alloy via Martensitic Transformation[J]. Mater. Charact., 2021, 173: 110 970.

[20]

Wu X. Review of Alloy and Process Development of TiAl Alloys[J]. Intermetallics, 2006, 14: 1 114-1 122.

[21]

Hecht U, Witusiewicz V, Drevermann A, et al. Grain Refinement by Low Boron Additions in Niobium-rich TiAl-based Alloys[J]. Intermetallics, 2008, 16: 969-978.

[22]

Bernal D, Chamorro X, Hurtado I, et al. Effect of Boron Content and Cooling Rate on the Microstructure and Boride Formation of β-Solidifying γ-TiAl TNM Alloy[J]. Metals, 2020, 10: 698.

[23]

Schwaighofer E, Clemens H, Mayer S. Microstructural Design and Mechanical Properties of A Cast and Heat Treated Intermetallic Multiphase γ-TiAl Based Alloy[J]. Intermetallics, 2014, 44: 128-140.

[24]

Lapin J, Pelachová T, Bajana O. High Temperature Deformation Behaviour and Microstructure of Cast In-situ TiAl Matrix Composite Reinforced with Carbide Particles[J]. J. Alloy. Compd., 2019, 797: 754-765.

[25]

Hu D. Effect of Composition on Grain Refinement in TiAl-based Alloys[J]. Intermetallics, 2001, 9: 1 037-1 043.

[26]

Liu G H, Li T R, Wang X Q, et al. Effect of Alloying Additions on Work Hardening, Dynamic Recrystallization, and Mechanical Properties of Ti-44Al-5Nb-1Mo Alloys During Direct Hot-pack Rolling[J]. Mater. Sci. Eng. A, 2020, 773: 138 838.

[27]

Yang G, Ren W, Liu Y H, et al. Effect of Pre-deformation in the β Phase Field on the Microstructure and Texture of the a Phase in a Boron-added β-solidifying TiAl Alloy[J]. J. Alloy. Compd., 2018, 742: 304-311.

[28]

Jin Y, Wang J N, Yang J, et al. Microstructure Refinement of Cast TiAl Alloys by β Solidification[J]. Scripta Mater., 2004, 51: 113-117.

[29]

Chen R, Liu Y, Xue X, et al. Study on Improving Microstructure and Mechanical Properties of Directionally Solidified Ti44Al6Nb1Cr Alloy by Cyclic DHT[J]. Mater. Sci. Eng. A, 2021, 809: 140 912.

[30]

Liang X P, Liu Y, Li H Z, et al. An Investigation on Microstructural and Mechanical Properties of Powder Metallurgical TiAl Alloy During Hot Pack-rolling[J]. Mater. Sci. Eng. A, 2014, 619: 265-273.

[31]

Li T R, Liu G H, Xu M, et al. Effects of Hot-pack Rolling Process on Microstructure, High-temperature Tensile Properties, and Deformation Mechanisms in Hot-pack Rolled Thin Ti-44Al-5Nb-(Mo, V, B) Sheets[J]. Mater. Sci. Eng. A, 2019, 764: 138 197.

[32]

Huang Z W, Lin J P, Zhao Z X, et al. Fatigue Response of A Grain Refined TiAl Alloy Ti-44Al-5Nb-1W-1B with Varied Surface Quality and Thermal Exposure History[J]. Intermetallics, 2017, 85: 1-14.

[33]

Wan Z P, Sun Y, Hu L X, et al. Dynamic Softening Behavior and Microstructural Characterization of TiAl-based Alloy During Hot Deformation[J]. Mater. Charact., 2017, 130: 25-32.

[34]

Li J B, Liu Y, Liu B, et al. High Temperature Deformation Behavior of Near γ-phase High Nb-containing TiAl Alloy[J]. Intermetallics, 2014, 52: 49-56.

[35]

Yang C, Jiang H, Hu D, et al. Effect of Boron Concentration on Phase Transformation Texture in As-solidified Ti44Al8NbxB[J]. Scripta Mater., 2012, 67: 85-88.

[36]

Appel F, Paul J, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology, 2011 Weinheim: Wiley-VCH. M]

AI Summary AI Mindmap
PDF

190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/