Preparation, Characterization and Photothermal Study of PVA/Ti2O3 Composite Films

Mengya Shang , Yanyan He , Jianhui Yu , Jiahui Yan , Haodi Xie , Jinling Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 658 -663.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 658 -663. DOI: 10.1007/s11595-024-2923-5
Advanced Materials

Preparation, Characterization and Photothermal Study of PVA/Ti2O3 Composite Films

Author information +
History +
PDF

Abstract

In this work, flexible photothermal PVA/Ti2O3 composite films with different amount (0 wt%, 5 wt%, 10 wt%, 15 wt%) of Ti2O3 particles modified by steric acid were prepared by a simple solution casting method. The microstructures, XRD patterns, FTIR spectra, UV-Vis-NIR spectra thermo-conductivity, thermostability and photothermal effects of these composite films were all characterized. These results indicated that Ti2O3 particles were well dispersed throughout the polyvinyl alcohol (PVA) matrix in the PVA/Ti2O3 composite films. And Ti2O3 particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature (about 57.4 °C for film with 15 wt% Ti2O3 amount) on the surface when it was irradiated by a simulated sunlight source (1 kW/m2).

Keywords

Ti2O3 particles / solution casting method / composite film / photothermal conversion

Cite this article

Download citation ▾
Mengya Shang, Yanyan He, Jianhui Yu, Jiahui Yan, Haodi Xie, Jinling Li. Preparation, Characterization and Photothermal Study of PVA/Ti2O3 Composite Films. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(3): 658-663 DOI:10.1007/s11595-024-2923-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li K, Chang T H, Li Z, et al. Biomimetic MXene Textures with Enhanced Light-to-Heat Conversion for Solar Steam Generation and Wearable Thermal Management[J]. Adv. Energy Mater., 2019, 9: 1901687.

[2]

Wang Z J, Wang Y, Liu G J. Rapid and Efficient Separation of Oil from Oil-in-Water Emulsions Using a Janus Cotton Fabric[J]. Angew. Chem. Int. Ed., 2016, 55: 1 291-1 294.

[3]

Wicklein B, Kocjan A, Salazar-Alvarez G, et al. Thermally Insulating and Fire-Retardant Lightweight Anisotropic Foams Based on Nanocellulose and Graphene Oxide[J]. Nat. Nanotechnol., 2015, 10(3): 277-283.

[4]

Nia G, Miljkovica N, Ghasemia H, et al. Volumetric Solar Heating of Nanofluids for Direct Vapor Generation[J]. Nano. Energy, 2015, 17: 209-301.

[5]

Deng Z Y, Zhou J H, Miao L, et al. The Emergence of Solar Thermal Utilization: Solar-Driven Steam Generation[J]. J. Mater. Chem. A, 2017, 5: 7 691-7 709.

[6]

Ni G W, Li G, Boriskina S V, et al. Steam Generation Under One Sun Enabled by a Floating Structure with Thermal Concentration[J]. Nat. Energy, 2016, 1: 16 126.

[7]

Wu M C, Deokar A R, Liao J H, et al. Graphene-Based Photothermal Agent for Rapid and Effective Killing of Bacteria[J]. ACS Nano., 2013, 7(2): 1 281-1 290.

[8]

Nathan N S. Research Opportunities to Advance Solar Energy Utilization[J]. Science, 2016, 351(6271): 1 920

[9]

Zhou L, Li X, Ni G W, et al. The Revival of Thermal Utilization from the Sun: Interfacial Solar Vapor Generation[J]. Nat. Sci. Rev., 2019, 6(3): 562-578.

[10]

Liu H D, Huang Z, Liu K, et al. Interfacial Solar-to-Heat Conversion for Desalination[J]. Adv. Energy Mater., 2019, 9(21): 1 900 310

[11]

Gao M M, Zhu L L, Peh C K, et al. Solar Absorber Material and System Designs for Photothermal Water Vaporization towards Clean Water and Energy Production[J]. Energy Environ. Sci., 2019, 12: 841-864.

[12]

Wang Z, Horseman T, Straub A P, et al. Pathways and Challenges for Efficient Solar-Thermal Desalination[J]. Sci. Adv., 2019, 5: 763.

[13]

Dao V D, Vu N H, Yun S. Recent Advances and Challenges for Solar-driven Water Evaporation System Toward Applications[J]. Nano. Energy, 2020, 68: 104 324.

[14]

Zhou X, Zhao F, Guo Y, et al. Architecting Highly Hydratable Polymer Networks to Tune the Water State for Solar Water Purification[J]. Sci. Adv., 2019, 5: 5 484.

[15]

Huang W, Su P, Cao Y, et al. Three-Dimensional Hierarchical CuxS-based Evaporator for High-Efficiency Multifunctional Solar Distillation[J]. Nano. Energy, 2020, 69: 104 465.

[16]

Ma Q, Yin P, Zhao M, et al. MOF-Based Hierarchical Structures for Solar-Thermal Clean Water Production[J]. Adv. Mater, 2019, 31: 1 808 249.

[17]

Hu X L, Li Y Y, Tian J, et al. Highly Efficient Full Solar Spectrum (UV-vis-NIR) Photocatalytic Performance of Ag2S Quantum Dot/TiO2 Nanobelt Heterostructures[J]. J. Ind. Eng. Chem., 2017, 45: 189-196.

[18]

Chala T F, Wu C M, Chou M H, et al. Melt Electrospun Reduced Tungsten Oxide/Polylactic Acid Fiber Membranes as a Photothermal Material for Light-Driven Interfacial Water Evaporation[J]. ACS Appl. Mater. Interfaces, 2018, 10: 28 955-28 962.

[19]

Abdelrasoul G N, Farkas B, Romano I, et al. Nanocomposite Scaffold Fabrication by Incorporating Gold Nanoparticles into Biodegradable Polymer Matrix: Synthesis, Characterization, and Photothermal Effect[J]. Mater. Sci. Eng. C Mater Biol. Appl., 2015, 56: 305-310.

[20]

Li Y, Yang Y, Shu X, et al. From Titanium Sesquioxide to Titanium Dioxide: Oxidation-Induced Structural, Phase, and Property Evolution[J]. Chem. Mater., 2018, 30: 4 383-4 392.

[21]

Wang J, Li Y Y, Deng L, et al. High-Performance Photothermal Conversion of Narrow-Bandgap Nanoparticles[J]. Adv. Mater., 2017, 29: 1 603 730.

[22]

Mallakpour S, Barati A. Efficient Preparation of Hybrid Nanocomposite Coatings Based on Poly(vinyl alcohol) and Silane Coupling Agent Modified TiO2 Nanoparticles[J]. Prog. Org. Coating, 2011, 71: 391-398.

[23]

Yu D B, Yam V W W. Hydrothermal-induced Assembly of Colloidal Silver Spheres into Various Nanoparticles on the Basis of HTAB-Mod-ified Silver Mirror Reaction[J]. J. Phys. Chem. B, 2005, 109: 5 497-5 503.

[24]

Liu Y, Xiao C, Li Z, et al. Vacancy Engineering for Tuning Electron and Phonon Structures of Two-Dimensional Materials[J]. Adv. Energy Mater., 2016, 6: 1 600 436.

[25]

Raghunath P, Huang W F, Lin M C. Quantum Chemical Elucidation of the Mechanism for Hydrogenation of TiO2 Anatase Crystals[J]. J. Chem. Phys., 2013, 138: 154 705.

[26]

Berger T, Sterrer M, Diwald O, et al. Light-Induced Charge Separation in Anatase TiO2 Particles[J]. J. Phys. Chem. B, 2005, 109: 6 061-6 068.

[27]

Mansur H S, Oréfice R L, Mansur A A. Characterization of Poly(vinyl alcohol)/poly(ethylene glycol) Hydrogels and PVA-derived Hybrids by Small-Angle X-ray Scattering and FTIR Spectroscopy[J]. Polymer, 2004, 45: 7 193-7 202.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/