Mechanical Properties and Electronic Structures of M (M=Ti, V, Cr, Mn and Fe) Doped β-Si3N4 from First-Principle

Min Long , Fuxiang Huang , Liangyu Xu , Xuemei Li , Zhou Yang , Yue Leng , Shini Mei

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 639 -644.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 639 -644. DOI: 10.1007/s11595-024-2920-8
Advanced Materials

Mechanical Properties and Electronic Structures of M (M=Ti, V, Cr, Mn and Fe) Doped β-Si3N4 from First-Principle

Author information +
History +
PDF

Abstract

The structures, mechanical properties and electronic structures of M metals (M=Ti, V, Cr, Mn and Fe) doped β-Si3N4 were investigated by First-principles calculations within CASTEP. The calculated lattice parameters of β-Si3N4 were consistent with previous date. The cohesive energy and formation enthalpy show that initial β-Si3N4 has the highest structural stability. The calculated elastic constant and the Voigt-Reuss-Hill approximation indicate that elastic moduli of β-Si3N4 are slightly reduced by M doping. Based on Poisson’s and Pugh’s ratio, β-Si3N4 is a ductile material and the toughness of β-Si3N4 increases with M doping, and Fe doping exhibited the best toughness. The results of density of states, charge distributions and overlapping populations indicate that β-Si3N4 has the strong covalent and ionic bond strength between N and Si.

Keywords

first-principles / β-Si3N4 / mechanical properties / electronic structure

Cite this article

Download citation ▾
Min Long, Fuxiang Huang, Liangyu Xu, Xuemei Li, Zhou Yang, Yue Leng, Shini Mei. Mechanical Properties and Electronic Structures of M (M=Ti, V, Cr, Mn and Fe) Doped β-Si3N4 from First-Principle. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(3): 639-644 DOI:10.1007/s11595-024-2920-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang P, Xu F H, Li J B, et al. The Impact of Oxygen Impurity and La Doping on Thermodynamic Properties of Si3N4 Ceramic: A First-principle Calculation Approach[J]. J. Eur. Ceram. Soc., 2020, 40(15): 5 293-5 297.

[2]

Zhou Y, Hyuga H, Kusano D, et al. Effects of Yttria and Magnesia on Densification and Thermal Conductivity of Sintered Reaction-bonded Silicon Nitrides[J]. J. Am. Ceram. Soc., 2019, 102(4): 1 579-1 588.

[3]

Wozniak J, Petrus M, Cygan T, et al. Influence of MXene (Ti3C2) Phase Addition on the Microstructure and Mechanical Properties of Dilicon Nitride Ceramics[J]. Materials, 2020, 5221: 1-11.

[4]

Liu N, Zhang J X, Duan Y S, et al. Effect of Rare Earth Oxides Addition on the Mechanical Properties and Coloration of Silicon Nitride Ceramics[J]. J. Eur. Ceram. Soc., 2020, 40(4): 1 132-1 138.

[5]

Wang L J, Qi Q, Cai P, et al. New Route to Improve the Fracture Toughness and Flexural Strength Si3N4 Ceramics by Adding FeSi2[J]. Scr. Mater., 2017, 126: 11-14.

[6]

Duan Y S, Liu N, Zhang J X, et al. Cost Effective Preparation of Si3N4 Ceramics with Improved Thermal Conductivity and Mechanical Properties[J]. J. Eur. Ceram., 2020, 40(2): 298-304.

[7]

Kim J M, Ko S I, Kim H N, et al. Effects of Micro-structure and Intergranular Glassy Phases on Thermal Conductivity of Silicon Nitride[J]. Ceram. Int., 2017, 43(7): 5 441-5 449.

[8]

Hampshire S, Kennedy T. Silicon Nitride-silicon Carbide Micro/Nanocomposites: A Review[J]. Int. J. Appl. Ceram. Tec., 2022, 19(2): 1 107-1 125.

[9]

Huang Z H, Yang J Z, Liu Y G, et al. Novel Sialon- based Ceramics Toughened Ferro-molybdenum Alloy[J]. J. Am. Ceram. Soc., 2012, 95(3): 859-861.

[10]

Sun Q C, Yang J, Yin B. High Toughness Integrated with Self-lubricity of Cu-doped Sialon Ceramics at Elevated Temperature[J]. J. Eur. Ceram. Soc., 2018, 38(7): 2 708-2 715.

[11]

Li Y J, Yu H L, Jin H Y, et al. Effects of FeMo Alloy on Nitridation and Mechanical Properties of Reaction Bonded Beta-sialon/FeMo Ceramics Composites[J]. J. Alloys Compd., 2014, 616: 639-645.

[12]

Wang L J, Qi Q, Zhang H, et al. High Tough W-added Silicon Nitride Ceramics[J]. Ceram. Int., 2019, 45(15): 19 055-19 059.

[13]

Puja A, Layla S, Saro S, et al. Origin of the Existence of Inter-granular Glassy Films in β-Si3N4[J]. J. Am. Ceram. Soc., 2020, 103(2): 737-743.

[14]

Zhu H Y, Shi L W, Li S Q, et al. Effect of Hydrostatic Pressure and Biaxial Strains on the Elastic and Electronic Properties of β-Si3N4[J]. Phys. Status Solidi. B, 2018, 255(6): 1 700 676-1 700 679.

[15]

Kutlu E, Narin P, Atmaca G, et al. Effect of Substitutional As Impurity on Electrical and Optical Properties of β-Si3N4 Structure[J]. Mater. Res. Bulll., 2016, 83(0): 128-134.

[16]

Borgen O, Seip H M. The Crystal Structure of Beta-Si3N4[J]. Acta Chem. Scand., 1961, 15(8): 1 789-1 789.

[17]

Lu X F, La P Q, Guo X, et al. Research of Electronic Structures and Optical Properties of Na- and Mg-doped β-Si3N4 Based on the First-principles Calculations[J]. Comput. Mater. Sci., 2013, 79: 174-181.

[18]

Segall M D, Lindan P J D, Probert M J, et al. First-principles Simulation: Ideas, Illustrations and the CASTEP Code[J]. J. Phys.: Condens. Matter., 2002, 14(11): 2 717-2 744.

[19]

Jojn P P, Wang Y. Accurate and Simple Density Fnctional for the Electronic Exchange Energy: Generalized Gradient Approximation[J]. Phys. Rev. B, 1986, 33(12): 8 800-8 802.

[20]

Vanderbilr D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Phys. Rev. B, 1990, 41(11): 7 892-7 895.

[21]

Monkhorst H J, Pack J D. Special Points for Brillou- in-zone Integrations[J]. Phys. Rev. B, 1976, 13(12): 5 188-5 192.

[22]

Kuwabara A, Matsunaga K, Tanaka I. Lattice Dynamics and Thermodynamical Properties of Silicon Nitride Polymorphs[J]. Phys. Rev. B, 2008, 78: 064 104-064 111.

[23]

Lu X F, Gao X, Ren J Q, et al. Investigation of Electronic Structures and Optical Properties of β-Si3N4 Doped with IVA Elements: a First-principles Simulation[J]. AIP Advances, 2018, 8(4): 045 023-8.

[24]

Yu B H, Chen D. Phase Transition Character and Thermodynamic Modeling of the P6 and P6′ Hexagonal Si-N System Supplemented by First-principles Calculations[J]. J. Alloys Compd., 2013, 581(13): 747-752.

[25]

Yashima M, Ando Y, Tabira Y. Crystal Structure and Electron Density of β-Silicon Nitride: Experimental and Theoretical Evidence for the Covalent Bonding and Charge[J]. J. Phys. Chem. B, 2007, 111(14): 3 609-3 613.

[26]

Jian Y X, Huang Z F, Wang Y, et al. Effects of Doped Elements (Si, Cr, W and Nb) on the Stability, Mechanical Properties and Electronic Structures of MoAlB Phase by the First-principles Calculation[J]. Materials, 2020, 19(13): 1-18.

[27]

Chen D, Yu B H. Pressure-induced Phase Transition in Silicon Nitride Material[J]. Chin. Phys.B, 2013, 22(2): 023 104-023 109.

[28]

Kim J, Suh Y J, Kang I. First-principles Calculations of the Phase Stability and the Elastic and Mechanical Properties of η-phases in the WC–Co System[J]. J. Alloys Compd., 2016, 656: 213-217.

[29]

Hill R. The Elastic Behaviour of a Crystalline Aggregate[J]. Proc. Phys. Soc., 1952, 65(5): 349-345.

[30]

He H L, Sekine T, Kobayaski H, et al. Shock-induced Phase Transition of to c-Si3N4[J]. Phys. Rev. B, 2000, 62(17): 11 412-11 417.

[31]

Hasan M Z, Hosaain K M, Mitro S L, et al. Structural, Mechanical, Electronic, and Anisotropic Properties of Niobium-doped Strontium Ferrite: First-principle Calculations[J]. Appl. Phys. A, 2021, 127: 36-39.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/