Influence of Al2O3/SiO2 Ratio on the Structure and Properties of Na+ / K+ Ion Exchange Na2O-MgO-Al2O3-SiO2 Glasses

Jianlei Wu , Junzhu Chen , Xiaokun Tian , Jiahao Li , Wenkai Gao , Yunlong Yue , Junfeng Kang

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 606 -612.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 606 -612. DOI: 10.1007/s11595-024-2916-4
Advanced Materials

Influence of Al2O3/SiO2 Ratio on the Structure and Properties of Na+ / K+ Ion Exchange Na2O-MgO-Al2O3-SiO2 Glasses

Author information +
History +
PDF

Abstract

In this work, the structure, viscosity and ion-exchange process of Na2O-MgO-Al2O3-SiO2 glasses with different Al2O3/SiO2 molar ratios were investigated. The results showed that, with increasing Al2O3/SiO2 ratio, the simple structural units Q1 and Q2 transformed into highly aggregated structural units Q3 and Q4, indicating the increase of polymerization degree of glass network. Meanwhile, the coefficient of thermal expansion decreased from 9.23×10−6 °C−1 to 8.88×10−6 °C−1. The characteristic temperatures such as melting, forming, softening and glass transition temperatures increased with the increase of Al2O3/SiO2 ratio, while the glasses working temperature range became narrow. The increasing Al2O3/SiO2 ratio and prolonging ion-exchange time enhanced the surface compressive stress (CS) and depth of stress layer (DOL). However, the increase of ion exchange temperature increased the DOL and decreased the CS affected by stress relaxation. There was a good linear relationship between stress relaxation and surface compressive stress. Chemical strengthening significantly improved the hardness of glasses, which reached the maximum value of (622.1 ° 10) MPa for sample with Al2O3/SiO2 ratio of 0.27 after heat treated at 410 °C for 2 h.

Keywords

network structure / viscosity / ion exchange / aluminosilicate glass

Cite this article

Download citation ▾
Jianlei Wu, Junzhu Chen, Xiaokun Tian, Jiahao Li, Wenkai Gao, Yunlong Yue, Junfeng Kang. Influence of Al2O3/SiO2 Ratio on the Structure and Properties of Na+ / K+ Ion Exchange Na2O-MgO-Al2O3-SiO2 Glasses. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(3): 606-612 DOI:10.1007/s11595-024-2916-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Garner S M. Flexible Glass: Enabling Thin, Lightweight, and Flexible Electronics, 2017 New York: John Wiley & Sons. M]

[2]

Garner S, Glaesemann S, Li X. Ultra-slim Flexible Glass for Roll-to-roll Electronic Device Fabrication. Appl. Phys. A, 2014, 116(02): 403-407. J]

[3]

Cesar de Sa, A J M. Numerical Modeling of Glass Forming Processes[J]. Engineering Computer Pineridge Press, 1986(3): 226–274

[4]

Garner S M, Wu K W, Liao Y C, et al. Cholesteric Liquid Crystal Display with Flexible Glass Substrates. J. Disp. Technol., 2013, 9(8): 644-650. J]

[5]

Li L, Lin H, Han J, et al. Influence of Spout Lip Set-height on Flow Behavior During the Glass Float Process. J. Non-Cryst. Solids, 2017, 472: 46-54. J]

[6]

Chengyu W, Qi L. Ultrathin Flexible Glass for Display. Glass and Enamel, 2016, 44(3): 43-46. [J]

[7]

Schill P. Use of Computer Flow Dynamics in Glass Technology. J. Non-Cryst. Solids, 2004, 345: 771-776. J]

[8]

Sheehan S, Surolia P K, Byrne O. Flexible Glass Substrate Based Dye Sensitized Solar Cells. Sol. Energ. Mat. Sol. C, 2015, 132: 237-244. J]

[9]

Ban N. A Study of the Behavior of Volatiles in the Float Process. J. Non-Cryst. Solids, 2004, 345: 777-781. J]

[10]

Hoehla S, Garner S, Hohmann M, et al. Active Matrix Color-LCD on 75 µm Thick Flexible Glass Substrates. J. Disp. Technol., 2012, 8(06): 309-316. J]

[11]

Manoharan M P, Zou C, Furman E, et al. Flexible Glass for High Temperature Energy Storage Capacitors. Energy Technology, 2013, 1(5–6): 313-318. J]

[12]

Smith J, Bawolek E, Lee Y, et al. Application of Flexible Flat Panel Display Technology to Wearable Biomedical Devices. Electron. Lett., 2015, 51(17): 1312-1314. J]

[13]

Hernandez-Rueda J, Noordam M L, Komen I, et al. Nonlinear Optical Response of a WS2 Monolayer at Room Temperature upon Multicolor Laser Excitation. ACS Photonics, 2021, 8(02): 550-556. J]

[14]

Ragoen C, Sen S, Lambricht T, et al. Effect of Al2O3 Content on the Mechanical and Interdiffusional Properties of Ion-exchanged Na-aluminosilicate Glasses. J. Non-Cryst. Solids, 2017, 458: 129-136. J]

[15]

Gy R. Ion Exchange for Glass Strengthening. Mat. Sci. Eng. B, 2008, 149(02): 159-165. J]

[16]

Cheng J, Xiao Z, Yang K, et al. Viscosity, Fragility and Structure of Na2O-CaO-Al2O3-SiO2 Glasses of Increasing Al/Si Ratio. Ceram. Int., 2013, 39(04): 4 055-4 062. J]

[17]

Wan J, Cheng J, Lu P. Effect of Al2O3 on the Thermal Expansion and Phase Separation of Borosilicate Glass. Chin. Ceram. Soc., 2008, 36(4): 544 [J]

[18]

Singh S P, Pal K, Tarafder A, et al. Effects of SiO2 and TiO2 Fillers on Thermal and Dielectric Properties of Eco-friendly Bismuth Glass Microcomposites of Plasma Display Panels. B Mater. SCI, 2010, 33(1): 33-41. J]

[19]

Guttler B, Salje E, Putnis A. Structural States of Mg Cordierite III: Infrared Spectroscopy and the Nature of the Hexagonal-modulated Transition. Phys. Chem. Miner., 1989, 16(4): 365-373. J]

[20]

Garai M, Sasmal N, Molla A R, et al. Effects of In-situ Generated Coinage Nanometals on Crystallization and Microstructure of Fluorophlogopite Mica Containing Glass-Ceramics. J. Mater. SCI Technol., 2015, 31(1): 110-119. J]

[21]

Toplis M J, Schaller T. A 31P MAS NMR Study of Glasses in the System xNa2O-(1−x) Al2O3-2SiO2 -yP2O5. J. Non-Cryst. Solids, 1998, 224(01): 57-68. J]

[22]

Garca-Coln L S, del Castillo L F, Goldstein P. Theoretical Basis for the Vogel-Fulcher-Tammann Equation. Phys. Rev. B Condens. Matter., 1989, 40(10): 7 040-7 044. J]

[23]

A B P. The Effects of 1 wt% P2O5 Addition on the Properties of Container Glass. Glass Technology, 2004, 6(45): 255-258. [J]

[24]

Toplis MJ, Dingwell DB. The Variable Influence of P2O5 on the Viscosity of Melts of Differing Alkali/Aluminium Ratio: Implications for the Structural Role of Phosphorus in Silicate Melts. Geochim Cosmochim AC, 1996, 60(21): 4 107-4 121. J]

[25]

Fotheringham U. Viscosity of Glass and Glass-Forming Melts. Springer Handbook of Glass, 2019 Berlin: Springer International Publishing. 79-112. M]

[26]

Cheng J, Xiao Z, Yang K, et al. Viscosity, Fragility and Structure of Na2O-CaO-Al2O3-SiO2 Glasses of Increasing Al/Si Ratio. Ceram. Int., 2013, 39(4): 4 055-4 062. J]

[27]

Wang M, Fang L, Li M, et al. Dependence of Gd2O3 Containing Silicate Glass Workability and Fragility on Structure. Mater. Chem. Phys., 2016, 179: 304-309. J]

[28]

Bechgaard T K, Goel A, Youngman R E, et al. Structure and Mechanical Properties of Compressed Sodium Aluminosilicate Glasses: Role of Non-bridging Oxygens. J. Non-Cryst. Solids, 2016, 441: 49-57. J]

[29]

Park K D, Han K, Choi Y G, et al. Chemical Strengthening of Sodium Aluminosilicate Glasses Containing P2O5 and B2O3. J. Non-Cryst. Solids, 2021, 554: 120 600. J]

[30]

Cui J, Cao X, Shi L, et al. The Effect of Substitution of Al2O3 and B2O3 for SiO2 on the Properties of Cover Glass for Liquid Crystal Display: Structure, Thermal, Visco-elastic, and Physical Properties. Int. J. Appl. Glass Sci., 2021, 12(03): 443-456. J]

[31]

Koike A, Akiba S, Sakagami T, et al. Difference of Cracking Behavior Due to Vickers Indentation Between Physically and Chemically Tempered Glasses. J. Non-Cryst. Solids, 2012, 358(24): 3 438-3 444. J]

[32]

Shen J, Green D J, Tressler R E, et al. Stress Relaxation of A Soda Lime Silicate Glass Below the Glass Transition Temperature. J. Non-Cryst. Solids, 2003, 324(3): 277-288. J]

[33]

Le V V, Lien L T H. Structural and Mechanical Properties of Al2O3. 2SiO2 Glass: Insights From Molecular Dynamics Simulations. J. Non-Cryst. Solids, 2021, 564: 120 840. J]

[34]

Ragoen C, Marple M A T, Sen S, et al. Structural Modifications Induced by Na+/K+ Ion Exchange in Silicate Glasses: A multinuclear NMR Spectroscopic Study. J. Non-Cryst. Solids, 2017, 474: 9-15. J]

[35]

J Allwardt, J Stebbins. Ca-Mg and K-Mg Mixing Around Non-bridging O Atoms in Silicate Glasses: An Investigation Using 17O MAS and 3QMAS NMR[J]. AM Mineral, 2004(8): 777–784

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/