Glass-Ceramics with High Strength and High Transmittance Obtained by Multi-Factor Controlling

Yunkun Hu , Yu Rao , Mingzhong Wang , Yinsheng Xu , Mengling Xia , Haizheng Tao , Ping Lu

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 551 -560.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 551 -560. DOI: 10.1007/s11595-024-2911-9
Advanced Materials

Glass-Ceramics with High Strength and High Transmittance Obtained by Multi-Factor Controlling

Author information +
History +
PDF

Abstract

The presence of Li2Si2O5 and LiAlSi4O10 could effectively improve the elastic modulus and transmittance of lithium disilicate(LD) glass-ceramics. Through synergistically modulation of the crystal content and grain size, we obtained high strength and high transmittance of LD glass-ceramics. The optimal sample had a high transmittance of 90.3%, the hardness was 7.72 GPa, the fracture toughness was 1.07 MPa·m1/2, and the elastic modulus was 103.1 GPa.

Keywords

lithium disilicate / glass-ceramics / transmittance / mechanical properties

Cite this article

Download citation ▾
Yunkun Hu, Yu Rao, Mingzhong Wang, Yinsheng Xu, Mengling Xia, Haizheng Tao, Ping Lu. Glass-Ceramics with High Strength and High Transmittance Obtained by Multi-Factor Controlling. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(3): 551-560 DOI:10.1007/s11595-024-2911-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MatWeb. Corning Gorilla® Glass 5 Display Glass[OL]. https://www.matweb.com/search/datasheet_print.aspx?matguid=c9239142e3514585a5809a15034e1d7f

[2]

Beall GH, Pinckney LR. Nanophase Glass-Ceramics[J]. J. Am. Ceram. Soc., 1999, 82(1): 5-16.

[3]

Zanotto ED. Bright Future for Glass-Ceramics[J]. Am. Ceram. Soc. Bull., 2010, 89(8): 19-27.

[4]

Stookey SD. Catalyzed Crystallization of Glass in Theory and Practice[J]. Ind. Eng. Chem., 1959, 51(7): 805-808.

[5]

Serbena FC, Mathias I, Foerster CE, et al. Crystallization Toughening of a Model Glass-Ceramic[J]. Acta Mater., 2015, 86: 216-228.

[6]

Höland W, Beall GH. Glass-Ceramic Technology 3rd[M], 2019 NJ: John Wiley & Sons. 209

[7]

Lien W, Roberts HW, Platt JA, et al. Microstructural Evolution and Hysical Behavior of a Lithium Disilicate Glass-Ceramic[J]. Dent. Mater., 2015, 31(8): 928-940.

[8]

Harada K, Raigrodski AJ, Chung KH, et al. A Comparative Evaluation of the Translucency of Zirconias and Lithium Disilicate for Monolithic Restorations[J]. J. Prosthet. Dent., 2016, 116(2): 257-263.

[9]

Bengisu M, Brow RK, White J. Interfacial Reactions Between Lithium Silicate Glass-Ceramics and Ni-based Superalloys and the Effect of Heat Treatment at Elevated Temperatures[J]. J. Mater. Sci., 2004, 39: 605-618.

[10]

Zarone F, Ferrari M, Mangano FG, et al. “Digitally Oriented Materials”: Focus on Lithium Disilicate Ceramics[J]. Int. J. Dent., 2016, 2016: 9 840 594.

[11]

Hing P, McMillan PW. The Strength and Fracture Properties of Glass-Ceramics[J]. J. Mater. Sci., 1973, 8: 1 041-1 048.

[12]

Borom MP, Turkalo AM, Doremus RH. Strength and Microstructure in Lithium Disilicate Glass-Ceramics[J]. J. Am. Ceram. Soc., 1975, 58(9–10): 385-391.

[13]

Höland M, Dommann A, Höland W, et al. Microstructure Formation and Surface Properties of a Rhenanite-Type Glass-Ceramic Containing 6.0 wt% P2O5[J]. Glass Sci. Technol., 2005, 78(4): 153-158.

[14]

Apel E, van’t Hoen C, Rheinberger V, et al. Influence of ZrO2 on the Crystallization and Properties of Lithium Disilicate Glass-Ceramics Derived from a Multi-Component System[J]. J. Eur. Ceram. Soc., 2005, 27(2–3): 1 571-1 577.

[15]

Höland W, Apel E, van’t Hoen C, et al. Studies of Crystal Phase Formations in High-Strength Lithium Disilicate Glass-Ceramics[J]. J. Non-Cryst. Solids, 2006, 352(38–39): 4 041-4 050.

[16]

Luo Y, Qu C, Mauro JC. High Toughness Transparent Glass-Ceramics with Petalite and β-Spodumene Solid Solution as Two Major Crystal Phases[J]. J. Am. Ceram. Soc., 2022, 105(10): 6 116-6 127.

[17]

Zhang J, Huang J, Yu Y, et al. Effect of Substitution of ZrO2 by SnO2 on Crystallization and Properties of Environment-Friendly Li2O-Al2O3-SiO2 System (LAS) Glass-Ceramics[J]. Ceram. Int., 2022, 48(15): 21 355-21 361.

[18]

Corning Inc. High Strength Glass-Ceramics Having Petalite and Lithium Silicate Structures[P]. US 9 809 488, 2017

[19]

Zheng X, Wen G, Song L, et al. Effects of P2O5 and Heat Treatment on Crystallization and Microstructure in Lithium Disilicate Glass Ceramics[J]. Acta Mater., 2008, 56(3): 549-558.

[20]

Huang X, Zheng X, Zhao G, et al. Microstructure and Mechanical Properties of Zirconia-Toughened Lithium Disilicate Glass-Ceramic Composites[J]. Mater. Chem. Phys., 2014, 143(2): 845-852.

[21]

Oliver WC, Pharr GM. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments[J]. J. Mater. Res., 1992, 7(6): 1 564-1 583.

[22]

Anstis GR, Chantikul P, Lawn BR, et al. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements[J]. J. Am. Ceram. Soc., 1981, 64(9): 533-538.

[23]

Christaras B, Auger F, Mosse E. Determination of the Moduli of Elasticity of Rocks. Comparison of the Ultrasonic Velocity and Mechanical Resonance Frequency Methods with Direct Static Methods[J]. Mater. Struct., 1994, 27: 222-228.

[24]

Zhang P, Li X, Yang J, et al. Effect of Heat Treatment on the Microstructure and Properties of Lithium Disilicate Glass-Ceramics[J]. J. Non-Cryst. Solids, 2014, 402: 101-105.

[25]

Roy R, Roy DM, Osborn EF. Compositional and Stability Relationships Among the Lithium Aluminosilicates: Eucryptite, Spodumene, and Petalite[J]. J. Am. Ceram. Soc., 1950, 33(5): 152-159.

[26]

Li D, Guo JW, Wang XS, et al. Effects of Crystal Size on the Mechanical Properties of a Lithium Disilicate Glass-Ceramic[J]. Mater. Sci. Eng. A, 2016, 669: 332-339.

[27]

de Kok P, Pereira GKR, Fraga S, et al. The Effect of Internal Roughness and Bonding on the Fracture Resistance and Structural Reliability of Lithium Disilicate Ceramic[J]. Dent. Mater., 2017, 33(12): 1 416-1 425.

[28]

Kim MJ, Ahn JS, Kim JH, et al. Effects of the Sintering Conditions of Dental Zirconia Ceramics on the Grain Size and Translucency[J]. J. Adv. Prosthodont, 2013, 5(2): 161-166.

[29]

Heffernan MJ, Aquilino SA, Diaz-Arnold AM, et al. Relative Translucency of Six All-Ceramic Systems. Part II: Core and Veneer Materials[J]. J. Prosthet. Dent., 2002, 88(1): 10-15.

[30]

Haussühl E, Schreuer J, Winkler B, et al. Structure-Property Relations and Thermodynamic Properties of Monoclinic Petalite, LiAlSi4O10[J]. J. Phys. Condens. Matter., 2012, 24(34): 345 402

[31]

Roy R, Osborn EF. The System Lithium Metasilicate-Spodumene-Silica[J]. J. Am. Chem. Soc., 1949, 71(6): 2 086-2 095.

[32]

Gonzaga CC, Cesar PF, Miranda WG, et al. Slow Crack Growth and Reliability of Dental Ceramics[J]. Dent. Mater., 2011, 27(4): 394-406.

[33]

Apel E, Deubener J, Bernard A, et al. Phenomena and Mechanisms of Crack Propagation in Glass-Ceramics[J]. J. Mech. Behav. Biomed. Mater., 2008, 1(4): 313-325.

[34]

Deng B, Harris JT, Luo J. Atomic Picture of Crack Propagation in Li2O-2SiO2 Glass-Ceramics Revealed by Molecular Dynamics Simulations[J]. J. Am. Ceram. Soc., 2020, 103(8): 4 304-4 312.

[35]

Serbena FC, Zanotto ED. Internal Residual Stresses in Glass-Ceramics: A Review[J]. J. Non-Cryst. Solids, 2012, 358(6–7): 975-984.

[36]

Sabino SRF, Cordeiro BGB, Silva LD, et al. Microstructural and Residual Stress Effects on Toughening of Stoichiometric BaO·2SiO2 Glass-Ceramics[J]. J. Eur. Ceram. Soc., 2022, 42(13): 6 119-6 134.

[37]

Tang T, Luo DL. Density Functional Theory Study of Electronic Structures in Lithium Silicates: Li2SiO3 and Li4SiO4[J]. J. At. Mol. Sci., 2010, 1(3): 185-200.

[38]

Zulueta YA, Dawson JA, Froeyen M, et al. Structural Properties and Mechanical Stability of Monoclinic Lithium Disilicate[J]. Phys. Status Solidi B, 2017, 254(10): 1 700 108

[39]

Wachtman JB, Cannon WR, Matthewson MJ. Mechanical Properties of Ceramics[M], 2009 NJ: John Wiley & Sons.

[40]

Hill R, Hearmon RFS. An Introduction to Applied Anisotropic Elasticity[J]. Mathematicl Gazette, 1964, 48(363): 41-43.

[41]

Serbena FC, Soares VO, Peitl O, et al. Internal Residual Stresses in Sintered and Commercial Low Expansion Li2O-Al2O3-SiO2 Glass-Ceramics[J]. J. Am. Chem. Soc., 2011, 94(4): 1 206-1 214.

[42]

Li CT. The Crystal Structure of LiAlSi2O6 III (High-Quartz Solid Solution)[J]. Z. Kristallogr. Cryst. Mater., 1968, 127(1–6): 327-348.

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/