Properties of Ultra-low Thermal Expansion LAS Transparent Glass-ceramics Prepared by Spodumene

Feng He , Zijun He , Zhiqiang Zhou , Yingliang Tian , Zhiyong Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 541 -550.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 541 -550. DOI: 10.1007/s11595-024-2910-x
Advanced Materials

Properties of Ultra-low Thermal Expansion LAS Transparent Glass-ceramics Prepared by Spodumene

Author information +
History +
PDF

Abstract

The glass-ceramics were prepared with the spodumene mineral as the main raw material, and the effects of ZrO2 replacing TiO2 on the samples were systematically investigated. The results show that the substitution of ZrO2 for TiO2 is not conductive to precipitate β-quartz solid solution phase, but can improve the transparency and flexural strength of glass-ceramics. And the glass-ceramic with the highest visible light transmittance (87%) and flexural strength (231.80 MPa) exhibits an ultra-low thermal expansion of −0.028×10−7 K−1 in the region of 30–700 °C.

Keywords

ultra-low thermal expansion / LAS transparent glass-ceramics / substitution of ZrO2 for TiO2 / spodumene mineral

Cite this article

Download citation ▾
Feng He, Zijun He, Zhiqiang Zhou, Yingliang Tian, Zhiyong Zhao. Properties of Ultra-low Thermal Expansion LAS Transparent Glass-ceramics Prepared by Spodumene. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(3): 541-550 DOI:10.1007/s11595-024-2910-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Serbena F C, Soares V O, Peitl O, et al. Internal Residual Stresses in Sintered and Commercial Low Expansion Li2O-Al2O3-SiO2 Glass-ceramics[J]. J. Am. Ceram. Soc., 2011, 94: 1 206-1 214.

[2]

Arnault L, Gerland M, Riviere A. Microstructural Study of Two LAS-type Glass-ceramics and Their Parent Glass[J]. J. Mater. Sci., 2000, 35: 2 331-2 345.

[3]

Krause D, Bach H. Low Thermal Expansion Glass Ceramics[M], 2005 Germany: Springer-Verlag Berlin Heidelberg.

[4]

Tashiro M. Crystallization of Glasses: Science and Technology[J]. J. Non-Cryst. Solids, 1985, 73: 575-584.

[5]

Hummel F A. Thermal Expansion Properties of Some Synthetic Lithia Minerals[J]. J. Am. Ceram. Soc., 1951, 34: 235-239.

[6]

Qing Z. The effects of B2O3 on the Microstructure and Properties of Lithium Aluminosilicate Glass-ceramics for LTCC Applications[J]. Mater. Lett., 2018, 212: 126-129.

[7]

Chen G, Ma M, Wei A, et al. The Dielectric, Thermal Properties and Crystallization Mechanism of Li-Al-B-Si-O Glass-ceramic Systems as a New ULTCC Material[J]. Ceram. Int., 2019, 45: 19 689-19 694.

[8]

Feng D, Zhu Y, Li F, et al. Influence Investigation of CaF2 on the LAS Based Glass-ceramics and the Glass-ceramic/diamond Composites[J]. J. Eur. Ceram. Soc., 2016, 36: 2 579-2 585.

[9]

Shi J, He F, Xie J, et al. Exploring the Influences of Li2O/SiO2 Ratio on Li2O-Al2O3-SiO2-B2O3-BaO Glass-ceramic Bonds for Vitrified cBN Abrasives[J]. Ceram. Int., 2019, 45: 15 358-15 365.

[10]

Wu S, Ding C, Ma G, et al. Co-enhancement of Oxidation Resistance and Mechanical Properties of Cf/LAS Composites: The Effects of h-BN Addition[J]. J. Eur. Ceram. Soc., 2020, 40: 19-27.

[11]

Roy R, Agrawal DK, McKinstry H A. Very Low Thermal Expansion Coefficient Materials[J]. Annu. Rev. Mater. Sci., 1989, 19: 59-81.

[12]

H Beall G, Duke D A. Transparent Glass-ceramics[J]. J. Mater. Sci., 1969, 4: 340-352.

[13]

Bancroft WD, Gurchot C. The Scattering of Light[J]. J. Phys. Chem., 1932, 36: 2 575-2 587.

[14]

Kleebusch E, Russel C, Patzig C, et al. Evidence of Epitaxial Growth of High-quartz Solid Solution on ZrTiO4 Nuclei in a Li2O-Al2O3-SiO2 Glass[J]. J. Alloys Compd., 2018, 748: 73-79.

[15]

Beall GH, Pinckney LR. Nanophase Glass-ceramics[J]. J. Am. Ceram. Soc., 1999, 82: 5-16.

[16]

Dressler M, Rüdinger B, Deubener J. Crystallization Kinetics in a Lithium Alumosilicate Glass Using SnO2 and ZrO2 Additives[J]. J. Non-Cryst. Solids, 2014, 389: 60-65.

[17]

Kleebusch E, Patzig C, Krause M, et al. The Formation of Nanocrystalline ZrO2 Nuclei in a Li2O-Al2O3-SiO2 Glass - a Combined XANES and TEM Study[J]. Sci. Rep., 2017, 7: 10 869.

[18]

Kleebusch E, Patzig C, Krause M, et al. The Effect of TiO2 on Nucleation and Crystallization of a Li2O-Al2O3-SiO2 Glass Investigated by XANES and STEM[J]. Sci. Rep., 2018, 8: 2 929.

[19]

Liu J, Wang Q, Zhang Z, et al. Investigation on Crystallization Behavior, Structure, and Properties of Li2O-Al2O3-SiO2 Glasses and Glass-ceramics with Co-doping ZrO2/P2O5[J]. J. Non-Cryst. Solids, 2022, 576: 121 226.

[20]

Wu J, Li Y, Zhao Y, et al. The Effects of MgF2 in Four Complex Nucleating Agents on the Performance and Crystallization of Lithium Aluminum Silicate Glasses[J]. J. Non-Cryst. Solids, 2022, 583: 121 469.

[21]

Soares V O, Peitl O, Zanotto E D. New Sintered Li2O-Al2O3-SiO2 Ultra-low Expansion Glass-ceramic[J]. J. Am. Ceram. Soc., 2013, 96: 1 143-1 149.

[22]

Kleebusch E, Patzig C, Hoche T, et al. Effect of the Concentrations of Nucleating Agents ZrO2 and TiO2 on the Crystallization of Li2O-Al2O3-SiO2 Glass: an X-ray Diffraction and TEM Investigation[J]. J. Mater. Sci., 2016, 51: 10 127-10 138.

[23]

Venkateswaran C, Sharma SC, Chauhan V S, et al. Near-zero Thermal Expansion Transparent Lithium Aluminosilicate Glass-ceramic by Microwave Hybrid Heat Treatment[J]. J. Am. Ceram. Soc., 2018, 101: 140-150.

[24]

Venkateswaran C, Sharma S C, Pant B, et al. Crystallisation Studies on Site Saturated Lithium Aluminosilicate (LAS) Glass[J]. Thermochim. Acta, 2019, 679: 178 311.

[25]

Nakane S, Kawamoto K. Coloration Mechanism of Fe Ions in β-quartz s.s. Glass-ceramics with TiO2 and ZrO2 as Nucleation Agents[J]. Front. in Mater., 2017, 4: 1-6.

[26]

Chavoutier M, Caurant D, Majerus O, et al. Effect of TiO2 Content on the Crystallization and the Color of (ZrO2,TiO2)-doped Li2O-Al2O3-SiO2 Glasses[J]. J. Non-Cryst. Solids, 2014, 384: 15-24.

[27]

Tulyaganov DU, Agathopoulos S, Fernandes HR, et al. Synthesis of Lithium Aluminosilacate Glass and Glass-ceramics from Spodumene Material[J]. Ceram. Int., 2004, 30: 1 023-1 030.

[28]

Xingzhong G, Lingjie Z, Hui Y. Effects of Li Replacement on the Nucleation, Crystallization and Microstructure of Li2O-Al2O3-SiO2 Glass[J]. J. Non-Cryst. Solids, 2008, 354: 4 031-4 036.

[29]

Q Zhou Z, He F, Shi MJ, et al. Influences of Al2O3 Content on Crystallization and Physical Properties of LAS Glass-ceramics Prepared from Spodumene[J]. J. Non-Cryst. Solids, 2022, 576: 121 256.

[30]

Wu J, Lin C, Liu J, et al. The Effect of Complex Nucleating Agent on the Crystallization, Phase Formation and Performances in Lithium Aluminum Silicate (LAS) Glasses[J]. J. Non-Cryst. Solids, 2019, 521: 119 486.

[31]

Zhang W, He F, Xie J, et al. Crystallization Mechanism and Properties of Glass-ceramics from Modified Molten Blast Furnace Slag[J]. J. Non-Cryst. Solids, 2018, 502: 164-171.

[32]

Kissinger E H. Reaction Kinetics in Differential Thermal Analysis[J]. Anal. Chem., 1957, 29: 1 702-1 706.

[33]

Ozawa Takeo. A New Method of Analyzing Thermogravimetric Data[J]. Bull. Chem. Soc. Jpn, 1965, 38: 1 881-1 886.

[34]

Augis J A, Bennett J E. Calculation of the Avrami Parameters for Heterogeneous Solid State Reactions Using a Modification of the Kissinger Method[J]. J. Therm. Anal., 1978, 13: 283-292.

[35]

Hu AM, Liang KM, Zhou F, et al. Phase Transformations of Li2O-Al2O3-SiO2 Glasses with CeO2 Addition[J]. Ceram. Int., 2005, 31: 11-14.

[36]

Guo X, Yang H, Han C, et al. Crystallization and Microstructure of Li2O-Al2O3-SiO2 Glass Containing Complex Nucleating Agent[J]. Thermochim. Acta, 2006, 444: 201-205.

[37]

Hu A M, Li M, Mao D L. Growth Behavior, Morphology and Properties of Lithium Aluminosilicate Glass Ceramics with Different Amount of CaO, MgO and TiO2 Additive[J]. Ceram. Int., 2008, 34: 1 393-1 397.

[38]

Wurth R, Pascual M J, Mather G C, et al. Crystallisation Mechanism of a Multicomponent Lithium Alumino-silicate Glass[J]. Mater. Chem. Phys., 2012, 134: 1 001-1 006.

[39]

Chen M T, He F, Shi J, et al. Low Li2O Content Study in Li2O-Al2O3-SiO2 Glass-ceramics[J]. J. Eur. Ceram. Soc., 2019, 39: 4 988-4 995.

[40]

Li Y H, Liang K M, Cao JW, et al. Spectroscopy and Structural State of V4+ Ions in Lithium Aluminosilicate Glass and Glass-ceramics[J]. J. Non-Cryst. Solids, 2010, 356: 502-508.

[41]

Aliyah L H, Katrina AT, Hasmaliza M. Preliminary Study on the Development of New Composition Lithium Aluminosilicate Glass Ceramic[J]. Mater. Today:. Proc., 2019, 17: 946-952.

[42]

Hopper R W. Stochastic Theory of Scattering from Idealized Spinodal Structures, I: Structure and Autocorrelation Function[J]. J. Non-Cryst. Solids, 1982, 49: 263-285.

AI Summary AI Mindmap
PDF

222

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/