Structural and Luminescent Properties of Mg0.25−xAl2.57O3.79N0.21:xMn2+ Green-Emitting Transparent Ceramic Phosphor

Liucheng Hao , Xiaojun Miao , Kai Li , Jianying Zhong , Bingtian Tu , Zhangfu Yang , Hao Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 533 -540.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (3) : 533 -540. DOI: 10.1007/s11595-024-2909-3
Advanced Materials

Structural and Luminescent Properties of Mg0.25−xAl2.57O3.79N0.21:xMn2+ Green-Emitting Transparent Ceramic Phosphor

Author information +
History +
PDF

Abstract

A series of spinel-type Mg0.25−xAl2.57O3.79N0.21:xMn2+ (MgAlON:xMn2+) phosphors were synthesized by the solid-state reaction route. The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing (HIP). The crystal structure, luminescence and mechanical properties of the samples were systematically investigated. The transparent ceramic phosphors with tetrahedrally coordinated Mn2+ show strong green emission centered around 515 nm under blue light excitation. As the Mn2+ concentration increases, the crystal lattice expands slightly, resulting in a variation of crystal field and a slight red-shift of green emission peak. Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden 4T1(4G)→6A1 transition of Mn2+. The decay time was found to decrease from 5.66 to 5.16 ms with the Mn2+ concentration. The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn2+ green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes.

Keywords

transparent ceramic phosphor / green emission / MgAlON / photoluminescence

Cite this article

Download citation ▾
Liucheng Hao, Xiaojun Miao, Kai Li, Jianying Zhong, Bingtian Tu, Zhangfu Yang, Hao Wang. Structural and Luminescent Properties of Mg0.25−xAl2.57O3.79N0.21:xMn2+ Green-Emitting Transparent Ceramic Phosphor. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(3): 533-540 DOI:10.1007/s11595-024-2909-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goldstein A, Krell A, Kleebe A. Transparent Ceramics at 50: Progress Made and Further Prospects[J]. J. Am. Ceram. Soc., 2016, 99(10): 3 173-3 197.

[2]

Zong X, Ren L, Wang H, et al. Structural Study of MgyAl(8+x−2y)/3O4−xNx (0 < x < 0.5, 0 < y < 1) Spinel Probed by X-ray Diffraction, 27Al MAS NMR, and First-Principles Calculations[J]. Inorg. Chem., 2020, 59(23): 17 009-17 017.

[3]

Sato T, Shirai M, Tanaka K, et al. Strong Blue Emission from Ti-doped MgAl2O4 Crystals[J]. J. Lumin., 2005, 114(2): 155-161.

[4]

Izumi K, Miyazaki S, Yoshida S, et al. Optical properties of 3d Transition-metal-doped MgAl2O4 Spinels[J]. Phys. Rev. B, 2007, 76(7): 075 111

[5]

Izumi K, Mizokawa T, Hanamura E. Optical Response and Electronic Structure of Zn-doped MgAl2O4[J]. J. Appl. Phys., 2007, 102(5): 053 109

[6]

Lombard P, Boizot B, Ollier N, et al. Spectroscopic Studies of Ti3+ Ions Speciation Inside MgAl2O4 Spinels[J]. J. Cryst. Growth, 2009, 311(3): 899-903.

[7]

Takeda T, Xie R, Hirosaki N, et al. Manganese Valence and Coordination Structure in Mn, Mg-codoped γ-AlON Green Phosphor[J]. J. Solid State Chem., 2012, 19 471–19 475

[8]

Nataf L, Rodríguez F, Valiente R. Pressure-induced Co2+ Photoluminescence Quenching in MgAl2O4[J]. Phys. Rev. B, 2012, 86(12): 125 123

[9]

Li K, Wang H, Liu X, et al. Mn2+ Activated MgAlON Transparent Ceramic: A New Green-emitting Transparent Ceramic Phosphor for High-power White LED[J]. J. Eur. Ceram. Soc., 2017, 37(13): 4 229-4 233.

[10]

Katsumata T, Takeuchi H, Komuro S, et al. X-ray Detector Based on Mn Doped MgAl2O4 and Si Photodiode[J]. Rev. Sci. Instrum., 2018, 89(9): 095 104

[11]

Clausen R, Petermann K. Mn2+ and Fe3+ Doped Oxides for Short Wavelength Solid State Lasers[J]. J. Lumin., 1988, 40-41185-186

[12]

Jouini A, Sato H, Yoshikawa A, et al. Ti-doped MgAl2O4 Spinel Single Crystals Grown by the Micro-pulling-down Method for Laser Application: Growth and Strong Visible Blue Emission[J]. J. Mater. Res., 2011, 21(09): 2 337-2 344.

[13]

Goldstein A, Loiko P, Burshtein Z, et al. Development of Saturable Absorbers for Laser Passive Q-Switching Near 1.5 µm Based on Transparent Ceramic Co2+:MgAl2O4[J]. J. Am. Ceram. Soc., 2016, 99(4): 1 324-1 331.

[14]

Tu B, Wang H, Liu X, et al. First-Principles Study on Site Preference of Aluminum Vacancy and Nitrogen Atoms in γ-Alon[J]. J. Am. Ceram. Soc., 2013, 96(6): 1 937-1 943.

[15]

Liu X, Wang H, Lavina B, et al. Chemical Composition, Crystal Structure, and Their Relationships with the Intrinsic Properties of Spinel-type Crystals Based on Bond Valences[J]. Inorg. Chem., 2014, 53(12): 5 986-5 992.

[16]

Tu B, Liu X, Wang H, et al. Combining 27Al Solid-State NMR and First-Principles Simulations to Explore Crystal Structure in Disordered Aluminum Oxynitride[J]. Inorg. Chem., 2016, 55(24): 12 930-12 937.

[17]

Tu B, Zhang H, Wang H, et al. Magic Angle Spinning NMR Study on Inversion Behavior and Vacancy Disorder in Alumina-Rich Spinel[J]. Inorg. Chem., 2018, 57(14): 8 390-8 395.

[18]

Fang CM, Metselaar R, Hintzen HT, et al. Structure Models for Gamma-Aluminum Oxynitride from Ab Initio Calculations[J]. J. Am. Ceram. Soc., 2001, 84(11): 2 633-2 637.

[19]

And JW, Griel P, Gauckler LJ. The Systme Al-Mg-O-N[J]. J. Am. Ceram. Soc., 1982, 65(5): c68-c69.

[20]

Sun W, Ma L, Yan D. Phase Relationships in the System Mg-Al-O-N[J]. Chin. Sci. Bull., 1990, 35(14): 1 189-1 192.

[21]

Willems HX, de With G, Metselaar R. Thermodynamics of Alon III: Stabilization of Alon with MgO[J]. J. Eur. Ceram. Soc., 1993, 12(1): 43-49.

[22]

Granon A, Goeuriot P, Thevenot F, et al. Reactivity in the Al2O3-AlN-MgO System. The MgAlON Spinel Phase[J]. J. Eur. Ceram. Soc., 1994, 13(4): 365-370.

[23]

Derkosch J, Mikenda W, Preisinger A. N-lines and Chromium-pairs in the Luminescence Spectra of the Spinels ZnAl2O4:Cr3+ and MgAl2O4:Cr3+[J]. J. Solid State Chem., 1977, 22(2): 127-133.

[24]

Garapon C, Manaa H, Moncorgé R. Absorption and Fluorescence Properties of Cr3+ Doped Nonstoichiometric Green Spinel[J]. J. Chem. Phys., 1991, 95(8): 5 501-5 512.

[25]

Singh V, Chakradhar RPS, Rao JL, et al. Combustion Synthesized MgAl2O4:Cr Phosphors—An EPR and Optical Study[J]. J. Lumin., 2009, 129(2): 130-134.

[26]

Rodríguez-Mendoza UR, Rodríguez VD, Ibarra A. Mn2+ Luminescence in Mg-Al Spinels[J]. Radiat. Eff. Defects Solids, 1995, 136(1–4): 29-32.

[27]

Jouini A, Yoshikawa A, Fukuda T, et al. Growth and Characterization of Mn2+-activated Magnesium Aluminate Spinel Single Crystals[J]. J. Cryst. Growth, 2006, 293(2): 517-521.

[28]

Zhong R, Zhang J, Wei H, et al. The Different Luminescent Characteristics of MgAl2O4:Mn2+ Between Phosphor Powder and Nanoparticles[J]. Chem. Phys. Lett., 2011, 508(4–6): 207-209.

[29]

Mali AV, Wandre TM, Sanadi KR, et al. Synthesis, Characterization and Electrical Properties of Novel Mn Substituted MgAl2O4 Synthesized by Sol–gel Method[J]. J. Mater. Sci.: Mater. Electron, 2015, 27(1): 613-619.

[30]

Katsumata T, Mitomi H, Nagayama H, et al. Compositional Variations in Optical Characteristics of Mn Doped Spinel Crystals[J]. J. Cryst. Growth, 2017, 468 387–468 390

[31]

Qu B, Wang L. Theoretical Research on Ground State of 3d Transition Metal Ions in Inorganic Compounds and Their Charge Transition Tendencies[J]. Chin. J. Lumin, 2022, 43(12): 1 815-1 822.

[32]

Sai Q, Xia C, Rao H, et al. Mn, Cr-co-doped MgAl2O4 Phosphors for White LEDs[J]. J. Lumin., 2011, 131(11): 2 359-2 364.

[33]

Katsumata T, Yoshida A, Sakuma T, et al. Compositional Variation of X-ray Excited Optical Luminescence from Mn Doped MgAl2O4[J]. ECS J. Solid State Sci. Technol., 2018, 7(6): R74-R76.

[34]

Wang Z, Ji H, Xu J, et al. Advances in Valence State Analysis of Manganese in Mn4+-activated Red Phosphors for White LEDs[J]. Chin. J. Lumin., 2020, 41(10): 1 195-1 213.

[35]

Morey O, Goeuriot P, Grosseau P, et al. Spectroscopic Analysis of “MgAlON” Spinel Powders: Influence of Nitrogen Content[J]. Solid State Ionics, 2003, 159(3–4): 381-388.

[36]

Morey O, Goeuriot P. “MgAlON” Spinel Structure: A New Crystallographic Model of Solid Solution as Suggested by Solid State NMR[J]. J. Eur. Ceram. Soc., 2005, 25(4): 501-507.

[37]

Pudukudy M, Yaakob Z, Rajendran R. Facile Synthesis of Mesoporous α-Mn2O3 Microspheres Via Morphology Conserved Thermal Decomposition of MnCO3 Microspheres[J]. Mater. Lett., 2014, 13 685–13 689

[38]

Biernacki L, Pokrzywnicki S. The Thermal Decomposition of Manganese Carbonate Thermogravimetry and Exoemission of Electrons[J]. J. Therm. Anal. Calorim., 1999, 55(1): 227-232.

[39]

Singh V, Chakradhar RPS, Rao JL, et al. Synthesis, Characterization, Photoluminescence and EPR Investigations of Mn Doped MgAl2O4 Phosphors[J]. J. Solid State Chem., 2007, 180(7): 2 067-2 074.

[40]

Kitaura M, Harima A, Xie R-J, et al. Electron Spin Resonance Study on Local Structure of Manganese Ions Doped in Gamma-Aluminum Oxynitride Phosphors[J]. Journal of Light & Visual Environment, 2012, 36(1): 6-9.

[41]

Singh V, Chakradhar RPS, Rao JL, et al. Characterization, EPR and Luminescence Studies of ZnAl2O4:Mn Phosphors[J]. J. Lumin., 2008, 128(3): 394-402.

[42]

Zhuang Y, Li C, Liu C, et al. High-efficiency YAG:Ce3+ Glass-ceramic Phosphor by an Organic-free Screen-printing Technique for High-power WLEDs[J]. Opt. Mater., 2020, 107 110 118

[43]

Fujita S, Sakamoto A, Tanabe S. Luminescence Characteristics of YAG Glass–Ceramic Phosphor for White LED[J]. IEEE J. Sel. Top. Quantum Electron, 2008, 14(5): 1 387-1 391.

[44]

Ibarra A, Garner FA, Hollenberg GL. Neutron-induced Changes in optical Properties of MgAl2O4 Spinel[J]. J. Nucl. Mater., 1995, 219 135–219 138

[45]

Lin G, Luo Q, Chen X, et al. Preparation and Luminescent Properties of ZnAl2O4/CaAl12O19: Mn4+ Phosphors[J]. Chin. J. Lumin., 2022, 43(4): 536-544.

[46]

Tomita A, Sato T, Tanaka K, et al. Luminescence Channels of Manganese-doped Spinel[J]. J. Lumin., 2004, 109(1): 19-24.

[47]

Raj SS, Gupta SK, Grover V, et al. MgAl2O4 Spinel: Synthesis, Carbon Incorporation and Defect-induced Luminescence[J]. J. Mol. Struct., 2015, 108 981–108 985

[48]

Wiglusz RJ, Watras A, Malecka M, et al. Structure Evolution and Up-Conversion Studies of ZnX2O4:Er3+/Yb3+(X = Al3+, Ga3+, In3+) Nanoparticles[J]. Eur. J. Inorg. Chem., 2014, 2014(6): 1 090-1 101.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/