Bioprocess-inspired Actin Biomineralized Hematite Mesocrystals for Energy Storage

Wei Xu , Chao Zhao , Jingjing Xie , Rongjie Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (6) : 1299 -1303.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (6) : 1299 -1303. DOI: 10.1007/s11595-023-2823-0
Advanced Materials

Bioprocess-inspired Actin Biomineralized Hematite Mesocrystals for Energy Storage

Author information +
History +
PDF

Abstract

Biomineralization is a biological process of synthesizing inorganic minerals within organisms. It has been found that intracellular proteins are involved in the room temperature synthesis process of anatase TiO2 in living mussels. Here, we used intracellular actin to synthesize hematite by biomineralization. Biomineralized hematite has a nano spindle structure with a particle size of approximately 150 nm. The microstructure indicates that the prepared hematite is a mesocrystals composed of ordered arrangement and assembly of primary nanoparticles. In addition, hematite mesocrystals exhibit good lithium storage performance as electrode materials for lithium batteries. The discharge specific capacity of the battery remained at 560.7 mAh·g−1 after 130 cycles at a current density of 200 mA·g−1. This work expands the synthesis methods of hematite by biomineralization, and provides a new strategy for preparing inorganic materials by intracellular proteins.

Keywords

actin / hematite / biomineralization / mesocrystals / lithium battery

Cite this article

Download citation ▾
Wei Xu, Chao Zhao, Jingjing Xie, Rongjie Wang. Bioprocess-inspired Actin Biomineralized Hematite Mesocrystals for Energy Storage. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(6): 1299-1303 DOI:10.1007/s11595-023-2823-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xie J, Ping H, Tan T, et al. Bioprocess-inspired Fabrication of Materials with New Structures and Functions[J]. Progress in Materials Science, 2019, 105: 100571.

[2]

Ping H, Xie H, Wan Y, et al. Confinement Controlled Mineralization of Calcium Carbonate Within Collagen Fibrils[J]. Journal of Materials Chemistry B, 2016, 4(5): 880-886.

[3]

Ping H, Xie H, Xiang M, et al. Confined-space Synthesis of Nanostructured Anatase, Directed by Genetically Engineered Living Organisms for Lithium-ion Batteries[J]. Chemical Science, 2016, 7(10): 6 330-6 336.

[4]

Tan T, Xie J, Wang W, et al. A Bio-inspired Strategy for Enhanced Hydrogen Evolution: Carbonate Ions as Hole Vehicles to Promote Carrier Separation[J]. Nanoscale, 2019, 11(24): 11 451-11 456.

[5]

Wan F, Wang W, Zou Z, et al. Bioprocess-inspired Preparation of Silica with Varied Morphologies and Potential in Lithium Storage[J]. Journal of Materials Science & Technology, 2021, 72: 61-68.

[6]

Yao S, Jin B, Liu Z, et al. Biomineralization: From Material Tactics to Biological Strategy[J]. Advanced Materials, 2017, 29(14): 1605903

[7]

Nudelman F, Sommerdijk N JM. Biomineralization as An Inspiration for Materials Chemistry[J]. Angewandte Chemie International Edition, 2012, 51(27): 6 582-6 596.

[8]

Mann S. Molecular Recognition in Biomineralization[J]. Nature, 1988, 332(6160): 119-124.

[9]

Singh R, Yoon H, Sanford R A, et al. Metabolism-induced CaCO3 Biomineralization during Reactive Transport in a Micromodel: Implications for Porosity Alteration[J]. Environmental Science & Technology, 2015, 49(20): 12 094-12 104.

[10]

Zhao J, Zhao X, Jiang Z, et al. Biomimetic and Bioinspired Membranes: Preparation and Application[J]. Progress in Polymer Science, 2014, 39(9): 1 668-1 720.

[11]

Zhang L, Wang T, Shen Z, et al. Chiral Nanoarchitectonics: Towards the Design, Self-assembly, and Function of Nanoscale Chiral Twists and Helices[J]. Advanced Materials, 2016, 28(6): 1 044-1 059.

[12]

Heuer AH, Fink DJ, Laraia VJ, et al. Innovative Materials Processing Strategies: A Biomimetic Approach[J]. Science, 1992, 255(5048): 1 098-1 105.

[13]

Arakaki A, Shimizu K, Oda M, et al. Biomineralization-inspired Synthesis of Functional Organic/inorganic Hybrid Materials: Organic Molecular Control of Self-organization of Hybrids[J]. Organic & Biomolecular Chemistry, 2015, 13(4): 974-989.

[14]

Wang R, Chi W, Wan F, et al. Nanocage Ferritin Reinforced Polyacrylamide Hydrogel for Wearable Flexible Strain Sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21 278-21 286.

[15]

Sturzenbaum SR, Winters C, Galay M, et al. Metal Ion Trafficking in Earthworms[J]. Journal of Biological Chemistry, 2001, 276(36): 34 013-34 018.

[16]

Stürzenbaum SR, Höckner M, Panneerselvam A, et al. Biosynthesis of Luminescent Quantum Dots in an Earthworm[J]. Nature Nanotechnology, 2013, 8(1): 57-60.

[17]

Chi W, Zou Z, Wang W, et al. Mussel Directed Synthesis of SnO2/Graphene Oxide Composite for Energy Storage[J]. Materials Chemistry Frontiers, 2021, 5(23): 8 238-8 247.

[18]

Xie J, Xie H, Su B L, et al. Mussel-directed Synthesis of Nitrogen-doped Anatase TiO2[J]. Angewandte Chemie International Edition, 2016, 55(9): 3 031-3 035.

[19]

Tadic M, Panjan M, Damnjanovic V, et al. Magnetic Properties of Hematite (α-Fe2O3) Nanoparticles Prepared by Hydrothermal Synthesis Method[J]. Applied Surface Science, 2014, 320: 183-187.

[20]

Tamirat AG, Rick J, Dubale AA, et al. Using Hematite for Photoelectrochemical Water Splitting: A Review of Current Progress and Challenges[J]. Nanoscale Horizons, 2016, 1(4): 243-267.

[21]

Mansour H, Letifi H, Bargougui R, et al. Structural, Optical, Magnetic and Electrical Properties of Hematite (α-Fe2O3) Nanoparticles Synthesized by Two Methods: Polyol and Precipitation[J]. Applied Physics A, 2017, 123: 1-10.

[22]

Zhu M, Wang Y, Meng D, et al. Hydrothermal Synthesis of Hematite Nanoparticles and Their Electrochemical Properties[J]. The Journal of Physical Chemistry C, 2012, 116(30): 16 276-16 285.

[23]

Wang L, Liang K, Wang G, et al. Interface-engineered Hematite Nanocones as Binder-free Electrodes for High-performance Lithium-ion Batteries[J]. Journal of Materials Chemistry A, 2018, 6(28): 13 968-13 974.

[24]

Xiong QQ, Tu JP, Ge X, et al. One-step Synthesis of Hematite Nanospindles from Choline Chloride/Urea Deep Eutectic Solvent with Highly Powerful Storage Versus Lithium[J]. Journal of Power Sources, 2015, 274: 1-7.

[25]

Wang L, Li X, Jiang X, et al. When Protein-based Biomineralization Meets Hydrothermal Synthesis: The Nanostructures of the As-prepared Materials are Independent of the Protein Types[J]. Chemical Communications, 2015, 51(96): 17 076-17 079.

[26]

Fei X, Li W, Zhu M. A Biomimetic-Mineralization-Inspired Hybrid Mesocrystal with Boosted Lithium Storage Properties[J]. ChemistrySelect, 2020, 5(7): 2 240-2 246.

[27]

Fei X, Li W, Shao Z, et al. Protein Biomineralized Nanoporous Inorganic Mesocrystals with Tunable Hierarchical Nanostructures[J]. Journal of the American Chemical Society, 2014, 136(44): 15 781-15 786.

[28]

He M, Zhang Y, Munyemana J C, et al. Tuning the Hierarchical Nanostructure of Hematite Mesocrystals via Collagen-templated Biomineralization[J]. Journal of Materials Chemistry B, 2017, 5(7): 1 423-1 429.

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/