Enhancement of the Mechanical Performance of SiCf/Phenolic Composites after High-temperature Pyrolysis Using ZrC/B4C Particles

Jie Ding , Yan Li , Minxian Shi , Zhixiong Huang , Yan Qin , Yingluo Zhuang , Cunku Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (6) : 1262 -1268.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (6) : 1262 -1268. DOI: 10.1007/s11595-023-2818-x
Advanced Materials

Enhancement of the Mechanical Performance of SiCf/Phenolic Composites after High-temperature Pyrolysis Using ZrC/B4C Particles

Author information +
History +
PDF

Abstract

The composites were prepared by modifying silicon carbide fiber with particles of zirconium carbide (ZrC) and boron carbide (B4C) and incorporating them into a phenolic resin matrix. The influence of ZrC and B4C on the mechanical performance of SiCf/phenolic composites after high-temperature pyrolysis was studied through flexural performance test. The results show that the composite material has good thermal stability and high-temperature mechanical properties. After static ablation at 1 400 °C for 15 minutes, the flexural strength of the composite material reaches 286 MPa, which is still 7.3% higher than at room temperature, indicating that the composite material still has good mechanical properties even after heat treatment at 1 400 °C.

Keywords

SiC fiber / phenolic resin / mechanical performance / high-temperature pyrolysis

Cite this article

Download citation ▾
Jie Ding, Yan Li, Minxian Shi, Zhixiong Huang, Yan Qin, Yingluo Zhuang, Cunku Wang. Enhancement of the Mechanical Performance of SiCf/Phenolic Composites after High-temperature Pyrolysis Using ZrC/B4C Particles. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(6): 1262-1268 DOI:10.1007/s11595-023-2818-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Christin F. Design, Fabrication, and Application of Thermostructural Composites (TSC) like C/C, C/SiC, and SiC/SiC Composites[J]. Advanced Engineering Materials, 2002, 4(12): 903-912.

[2]

Yibo D, Xiaokui YUE, Guangshan C, et al. Review of Control and Guidance Technology on Hypersonic Vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18.

[3]

Ahmad S, Ali S, Salman M, et al. A Comparative Study on the Effect of Carbon-based and Ceramic Additives on the Properties of Fiber Reinforced Polymer Matrix Composites for High Temperature Applications[J]. Ceramics International, 2021, 47(24): 33 956-33 971.

[4]

Wang S, Wang Y, Bian C, et al. The Thermal Stability and Pyrolysis Mechanism of Boron-containing Phenolic Resins: the Effect of Phenyl Borates on the Char Formation[J]. Applied Surface Science, 2015, 331: 519-529.

[5]

Wang ZJ, Kwon DJ, Gu GY, et al. Ablative and Mechanical Evaluation of CNT/Phenolic Composites by Thermal and Microstructural Analyses[J]. Composites Part B: Engineering, 2014, 60: 597-602.

[6]

Sabagh S, Azar AA, Bahramian AR. High Temperature Ablation and Thermo-physical Properties Improvement of Carbon Fiber Reinforced Composite Using Graphene Oxide Nanopowder[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 326-333.

[7]

Pulci G, Paglia L, Genova V, et al. Low Density Ablative Materials Modified by Nanoparticles Addition: Manufacturing and Characterization[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 330-337.

[8]

Abdalla MO, Ludwick A, Mitchell T. Boron-modified Phenolic Resins for High Performance Applications[J]. Polymer, 2003, 44(24): 7 353-7 359.

[9]

Li S, Chen F, Zhang B, et al. Structure and Improved Thermal Stability of Phenolic Resin Containing Silicon and Boron Elements[J]. Polymer Degradation and Stability, 2016, 133: 321-329.

[10]

Uyanna O, Najafi H. Thermal Protection Systems for Space Vehicles: A Review on Technology Development, Current Challenges and Future Prospects[J]. Acta Astronautica, 2020, 176: 341-356.

[11]

Ding J, Sun J, Huang Z, et al. Improved High-temperature Mechanical Property of Carbon-phenolic Composites by Introducing Titanium Diboride Particles[J]. Composites Part B: Engineering, 2019, 157: 289-294.

[12]

Mirzapour A, Asadollahi MH, Baghshaei S, et al. Effect of Nanosilica on the Microstructure, Thermal Properties and Bending Strength of Nanosilica Modified Carbon Fiber/Phenolic Nanocomposite[J]. Composites Part A: Applied Science and Manufacturing, 2014, 63: 159-167.

[13]

Subha S, Singh D, Venkatanarayanan PS, et al. Experimental Investigation of Mechanical, Thermal, and Ablation Performance of ZrO2/SiC Modified C-Ph Composites[J]. International Journal of Applied Ceramic Technology, 2019, 16(2): 761-771.

[14]

Yuan J, He P, Jia D, et al. SiC Fiber Reinforced Geopolymer Composites, Part 1: Short SiC Fiber[J]. Ceramics International, 2016, 42(4): 5 345-5 352.

[15]

He P, Jia D, Zheng B, et al. SiC Fiber Reinforced Geopolymer Composites, Part 2: Continuous SiC Fiber[J]. Ceramics International, 2016, 42(10): 12 239-1 2245.

[16]

Han J, Hu P, Zhang X, et al. Oxidation-resistant ZrB2-SiC Composites at 2 200 °C[J]. Composites Science and Technology, 2008, 68(3–4): 799-806.

[17]

Haibo O, Cuiyan L, Jianfeng H, et al. Self-healing ZrB2-SiO2 Oxidation Resistance Coating for SiC Coated Carbon/Carbon Composites[J]. Corrosion Science, 2016, 110: 265-272.

[18]

Shi S, Gong C, Liang J, et al. Ablation Mechanism and Properties of Silica Fiber-reinforced Composite Upon Oxyacetylene Torch Exposure[J]. Journal of Composite Materials, 2016, 50(27): 3 853-3 862.

[19]

Liu Y, Gao J, Zhang R. Thermal Properties and Stability of Boron-containing Phenol-formaldehyde Resin Formed from Paraformaldehyde[J]. Polymer Degradation and Stability, 2002, 77(3): 495-501.

[20]

Liu Y, Jing X. Pyrolysis and structure of hyperbranched polyborate modified phenolic resins[J]. Carbon, 2007, 45(10): 1965-1971.

[21]

Wang S, Huang H, Tian Y, et al. Effects of SiC Content on Mechanical, Thermal and Ablative Properties of Carbon/Phenolic Composites[J]. Ceramics International, 2020, 46(10): 16 151-16 156.

[22]

Zou Z, Qin Y, Fu H, et al. ZrO2 f-coated Cf Hybrid Fibrous Reinforcements and Properties of Their Reinforced Ceramicizable Phenolic Resin Matrix Composites[J]. Journal of the European Ceramic Society, 2021, 41(3): 1 810-1 816.

[23]

Chen X, Sun Z, Niu X, et al. Evolution of the Structure and Mechanical Performance of Cansas-II SiC Fibres after Thermal Treatment[J]. Ceramics International, 2021, 47(19): 27 217-27 229.

[24]

Chen Y, Chen Z, Zhang R, et al. Structural Evolution and Mechanical Properties of Cansas-III SiC Fibers After Thermal Treatment up to 1 700 °C[J]. Journal of the European Ceramic Society, 2021, 41(10): 5 036-5 045.

[25]

Feng T, Shi X, Hou W, et al. The Ablation and Mechanical Behaviors of C/(SiC-ZrC) n Multi-layer Structure Matrix Composites by Chemical Vapor Infiltration[J]. Journal of the European Ceramic Society, 2022, 42(10): 4 133-4 143.

[26]

Ding J, Zhuang Y, Shi M, et al. Effects of Nano-ZrSi2 on Thermal Stability of Phenolic Resin and Thermal Reusability of Quartz-phenolic Composites[J]. Nanotechnology Reviews, 2022, 11(1): 3 095-3 103.

[27]

Chen X, Sun Z, Han X, et al. Evolution of Microstructure and Tensile Strength of Cansas-II SiC Fibers under Air Oxidizing Atmosphere[J]. Journal of the European Ceramic Society, 2021, 41(15): 7 585-7 600.

[28]

Wang S, Huang H, Tian Y. Effects of Zirconium Carbide Content on Thermal Stability and Ablation Properties of Carbon/Phenolic Composites[J]. Ceramics International, 2020, 46(4): 4 307-4 313.

[29]

Wang C, Ding J, Huang Z, et al. Ceramizable Phenolic Adhesive Modified by Different Inorganic Particles: A Comparative Study of Thermal Stability, Bonding Strength and Bonding Mechanism[J]. Journal of the European Ceramic Society, 2023, 43(1): 64-72.

[30]

Subramanian C, Roy TK, Murthy TSRC, et al. Effect of Zirconia Addition on Pressureless Sintering of Boron Carbide[J]. Ceramics International, 2008, 34(6): 1 543-1 549.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/