Preparation of Zr-Cu Coatings on Copper Substrate Using a Molten Salt Method

Yusha Li , Yingchun Zhang , Yanhong Liu , Guangbin Li , Xiaoxun Dong

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (5) : 1155 -1160.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (5) : 1155 -1160. DOI: 10.1007/s11595-023-2804-3
Metallic Materials

Preparation of Zr-Cu Coatings on Copper Substrate Using a Molten Salt Method

Author information +
History +
PDF

Abstract

Dense zirconium coatings on copper substrates were obtained in an alumina crucible and a stainless steel crucible from FLiNaK-K2ZrF6 molten salt at 1 023 K. Due to the potential differences between copper and zirconium, zirconium can diffuse into the copper substrate to form zirconium alloys on the surface of copper substrates in the course of deposition. The coating deposited in a stainless steel crucible has a gray surface. The components of the coating are mainly CuZr2 alloy and Cu10Zr7 alloy, and, the outermost layer of the coating is a layer of amorphous pure zirconium. The coating deposited in an alumina crucible has a silvery white metallic luster. The components of the coating are mainly Cu-Zr-Al intermetallic compounds, AlCu2Zr, ZrAl, AlCu and CuZr. Furthermore, two types of zirconium coatings can greatly increase the hardness of the substrate.

Keywords

coating / Zr-Cu / molten salt / intermetallic compounds

Cite this article

Download citation ▾
Yusha Li, Yingchun Zhang, Yanhong Liu, Guangbin Li, Xiaoxun Dong. Preparation of Zr-Cu Coatings on Copper Substrate Using a Molten Salt Method. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(5): 1155-1160 DOI:10.1007/s11595-023-2804-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim IH, Jung YI, Choi BK, et al. Corrosion and Oxidation Resistance Behaviors of Ta-containing Low Alloying Zirconium[J]. Metals and Materials International, 2021: 3 079–3 084

[2]

Xiong B, Yang X, Luo FC. The Application of Zirconium, Hafnium and Their Compounds, 2002 Beijing: Metallurgical Industry Press. [M]

[3]

Motta AT, Couet A, Comstock RJ. Corrosion of Zirconium Alloys Used for Nuclear Fuel Cladding[J]. Annual Review of Materials Research, 2015, 45: 311-343.

[4]

Nikulina AV. Zirconium Alloys in Nuclear Power Engineering[J]. Metal Science and Heat Treatment, 2004, 46: 458-462.

[5]

Wang Y, Yao J, Li Y. Glass Formation Adjacent to the Intermetallic Compounds in Cu-Zr Binary System[J]. Journal of Materials Science & Technology, 2018, 34(4): 605-612.

[6]

Xiang MQ, Zhang Y, Jiang F, et al. Progress in Electrodesposition of Zirconium Coating from Molten Salts[J]. Chinese Journal of Rare Metals, 2016, 40(6): 620-625.

[7]

Zheng YF, Liu D, Liu XL, et al. Enhanced Corrosion Resistance of Zr Coating on Biomedical TiNi Alloy Prepared by Plasma Immersion Ion Implantation and Deposition[J]. Applied Surface Science, 2008, 255(2): 512-514.

[8]

Kim HJ, Lim KM, Seong BG, et al. Amorphous Phase Formation of Zr-based Alloy Coating by HVOF Spraying Process[J]. Journal of Materials Science, 2001, 36: 49-54.

[9]

Sitek R, Kwaśniak P, Sopicka-Lizer M, et al. Experimental and Ab-initio Study of the Zr-and Cr-enriched Aluminide Layer Produced on an IN 713C Inconel Substrate by CVD; Investigations of the Layer Morphology, Structural Stability, Mechanical Properties, and Corrosion Resistance[J]. Intermetallics, 2016, 74: 15-24.

[10]

Feng X, Zhang K, Zheng Y, et al. Structure, Morphologies and Mechanical Properties Study of Cr-Zr-NFilms[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018, 436(1): 112-118.

[11]

Haviar S, Kozak T, Meiedlhumer M, et al. Nanoindentation and Microbending Analyses of Glassy and Crystalline Zr(Hf)Cu Thin-Film Alloys[J]. Surface and Coatings Technology, 2020, 399(15): 126-139.

[12]

Abdelkader AM, Daher A, Abdelkareem RA, et al. Preparation of Zirconium Metal by the Electrochemical Reduction of Zirconium Oxide[J]. Metallurgical and Materials Transactions: Process Metallurgy and Materials Processing Science, B, 2007, 38(1): 35-44.

[13]

Wu YK, Xu ZG, Chen SL, et al. Electrochemical Behavior of Zirconium in Molten NaCl-KCl-K2ZrF6 System[J]. Rare Metals, 2011, 30: 8-13.

[14]

Cai F, Chen PF, Zhang SH, et al. Annealing Behaviour of Electrode-posited Ni-Zr and Ni-Al Composite Coatings[J]. Surface Engineering, 2019, 35(2): 153-157.

[15]

Ghazanlou SI, Ahmadiyeh S, Yavari R. Investigation of Pulse Electro-deposited Ni-Co/SiO2 Nanocomposite Coating[J]. Surface Engineering, 2017, 33: 337-347.

[16]

Li M, Xu ZG, Chen S. Electrochemical Reduction of Zirconium Oxide and Co-deposition of Al-Zr Alloy from Cryolite Molten Salt[J]. Journal of the Electrochemical Society, 2019, 166: 65-68.

[17]

Girginov A, Tzvetkoff TZ, Bojinov M. Electrodeposition of Refractory-metals (Ti, Zr, Nb, Ta) from Molten-salt Electrolytes[J]. Journal of Applied Electrochemistry, 1995, 25(11): 993-1003.

[18]

Ye S, Li G. Electroplating of Zirconium from Molten Fluorides Bath[J]. Journal of Chinese Society for Corrosion and Protection, 1990, 10(1): 66-72.

[19]

Li W, Chen Z, Wei C, et al. The Electrochemical Formation of Al-Cu Alloys in a LiCl-KCl-AlCl3 Molten Salt[J]. Electrochimica Acta, 2016, 196: 162-168.

[20]

Li C, Li DX, Tao XM, et al. Molecular Dynamics Simulation of Diffusion Bonding of Al-Cu Interface[J]. Calphad., 2015, 51: 396-397.

[21]

Fecht HJ, Han G, Fu Z, et al. Metastable Phase Formation in the Zr-Al Binary System Induced by Mechanical Alloying[J]. Journal of Applied Physics, 1990, 67(4): 1744-1748.

[22]

Pauly S, Liu G, Wang G, et al. Modeling Deformation Behavior of Cu-Zr-Al Bulk Metallic Glass Matrix Composites[J]. Applied Physics Letters, 2009, 95(10): 101906-1-101906-3.

[23]

Inoue A, Zhang W. Formation, Thermal Stability and Mechanical Properties of Cu-Zr-Al Bulk Glassy Alloys[J]. Materials Transactions, 2001, 43: 2921-2925.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/